

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

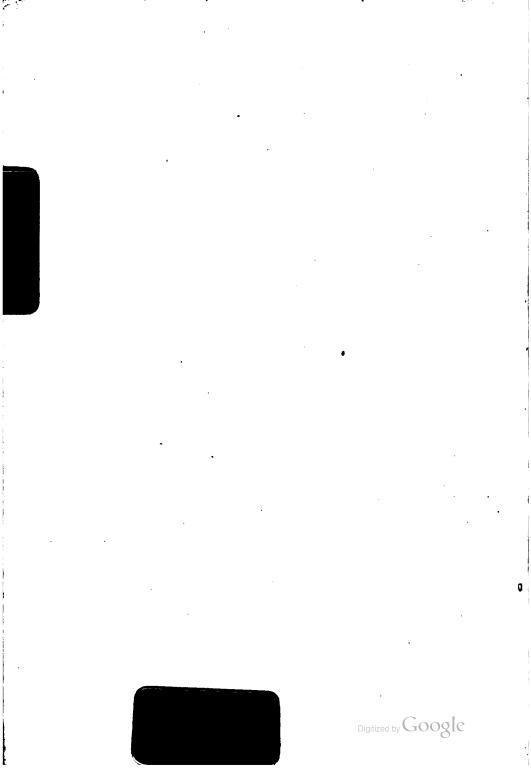
Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

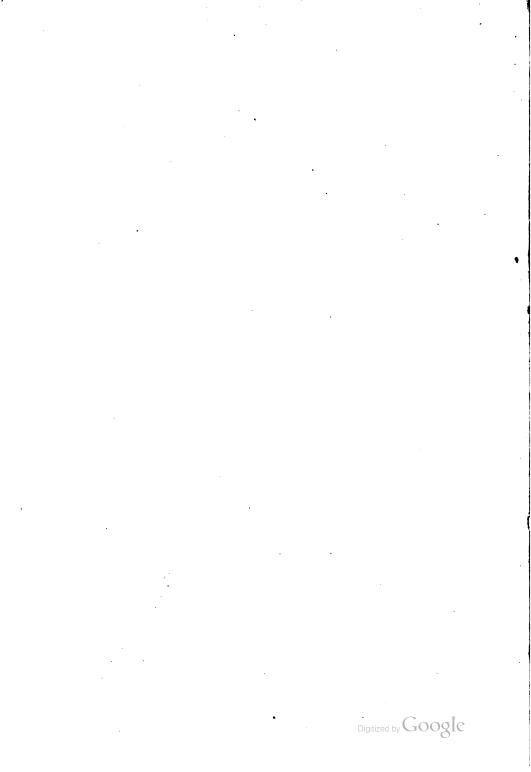
We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.


About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

A SHORT TABLE OF INTEGRALS


NE HROLE

JOHN G. WOLBACH LIBRARY HARVARD COLLEGE OBSERVATORY 60 GARDEN STREET CANTERNIT (AST 02138

Margaret Harwood, 41 Concord Arenne, Cambridge. January, 1906.

A ;

SHORT TABLE OF INTEGRALS

BY

B. O. PEIRCE

HOLLIS PROFESSOR OF MATHEMATICS AND NATURAL PHILOSOPHY IN HARVARD UNIVERSITY

REVISED EDITION

GINN & COMPANY

BOSTON · NEW YORK · CHICAGO · LONDON

Since I cannot hope that these formulas are wholly free from misprints, I shall be grateful to any person who will call my attention to such errors as he may discover.

F2A 310

P4

B. O. PEIRCE, Harvard University, Cambridge.

Copyright, 1899 By GINN & COMPANY

ALL RIGHTS RESERVED 35.6

The Athenaum Press GINN & COMPANY · CAM-BRIDGE · MASSACHUSETTS

TABLE OF INTEGRALS.

I. FUNDAMENTAL FORMS.

ഷം

1.
$$\int a \, dx = ax.$$

2.
$$\int af(x) \, dx = a \int f(x) \, dx.$$

3.
$$\int \frac{dx}{x} = \log x.$$

4.
$$\int x^m \, dx = \frac{x^{m+1}}{m+1}, \text{ when } m \text{ is different from } -1.$$

5.
$$\int e^x \, dx = e^x.$$

6.
$$\int a^x \log a \, dx = a^x.$$

7.
$$\int \frac{dx}{1+x^2} = \tan^{-1}x, \text{ or } - \operatorname{ctn}^{-1}x.$$

8.
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x, \text{ or } - \cos^{-1}x.$$

9.
$$\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1}x, \text{ or } - \csc^{-1}x.$$

10.
$$\int \frac{dx}{\sqrt{2x-x^2}} = \operatorname{versin}^{-1}x, \text{ or } - \operatorname{coversin}^{-1}x.$$

11.
$$\int \cos x \, dx = \sin x, \text{ or } - \operatorname{coversin} x.$$

12.
$$\int \sin x \, dx = -\cos x, \text{ or versin} x.$$

13.
$$\int \operatorname{ctn} x \, dx = \log \sin x.$$

14.
$$\int \tan x \, dx = -\log \cos x.$$

15.
$$\int \tan x \sec x \, dx = \sec x.$$

16.
$$\int \sec^2 x \, dx = \tan x.$$

17.
$$\int \csc^2 x \, dx = -\operatorname{ctn} x.$$

In the following formulas, u, v, w, and y represent any functions of x:

18.
$$\int (u+v+w+\text{etc.}) \, dx = \int u \, dx + \int v \, dx + \int w \, dx + \text{etc.}$$

19 a.
$$\int u \, dv = uv - \int v \, du.$$

19 b.
$$\int u \frac{dv}{dx} \, dx = uv - \int v \frac{du}{dx} \, dx.$$

20.
$$\int f(y) \, dx = \int \frac{f(y) \, dy}{\frac{dy}{dx}}.$$

4

RATIONAL ALGEBRAIC FUNCTIONS.

II. RATIONAL ALGEBRAIC FUNCTIONS.

A. — Expressions Involving (a + bx).

The substitution of y or z for x, where $y \equiv a + bx$, $z \equiv (a + bx) / x$, gives 21. $\int (a + bx)^m dx = \frac{1}{b} \int y^m dy$. 22. $\int x (a + bx)^m dx = \frac{1}{b^2} \int y^m (y - a) dy$. 23. $\int x^n (a + bx)^m dx = \frac{1}{b^{n+1}} \int y^m (y - a)^n dy$. 24. $\int \frac{x^n dx}{(a + bx)^m} = \frac{1}{b^{n+1}} \int \frac{(y - a)^n dy}{y^m}$. 25. $\int \frac{dx}{x^n (a + bx)^m} = -\frac{1}{a^{m+n-1}} \int \frac{(z - b)^{m+n-2} dz}{z^m}$.

Whence

26.
$$\int \frac{dx}{a+bx} = \frac{1}{b} \log (a+bx).$$

27.
$$\int \frac{dx}{(a+bx)^2} = -\frac{1}{b(a+bx)}.$$

28.
$$\int \frac{dx}{(a+bx)^3} = -\frac{1}{2 b (a+bx)^2}.$$

29.
$$\int \frac{x \, dx}{a+bx} = \frac{1}{b^2} [a+bx-a \log (a+bx)].$$

30.
$$\int \frac{x \, dx}{(a+bx)^2} = \frac{1}{b^2} \left[\log (a+bx) + \frac{a}{a+bx} \right].$$

5

$$\begin{aligned} \mathbf{31.} \int \frac{x \, dx}{(a+bx)^3} &= \frac{1}{b^2} \left[-\frac{1}{a+bx} + \frac{a}{2(a+bx)^3} \right] \cdot \\ \mathbf{32.} \int \frac{x^2 \, dx}{a+bx} &= \frac{1}{b^3} \left[\frac{1}{2} (a+bx)^2 - 2a(a+bx) + a^2 \log(a+bx) \right] \cdot \\ \mathbf{33.} \int \frac{x^2 \, dx}{(a+bx)^2} &= \frac{1}{b^3} \left[a+bx-2a \log(a+bx) - \frac{a^2}{a+bx} \right] \cdot \\ \mathbf{34.} \int \frac{dx}{(a+bx)^2} &= -\frac{1}{a} \log \frac{a+bx}{x} \cdot \\ \mathbf{35.} \int \frac{dx}{x(a+bx)^2} &= -\frac{1}{a} \log \frac{a+bx}{x} \cdot \\ \mathbf{35.} \int \frac{dx}{x(a+bx)^2} &= \frac{1}{a(a+bx)} - \frac{1}{a^2} \log \frac{a+bx}{x} \cdot \\ \mathbf{36.} \int \frac{dx}{x^2(a+bx)} &= -\frac{1}{ax} + \frac{b}{a^3} \log \frac{a+bx}{x} \cdot \\ \mathbf{37.} \int (a+bx)^n (a'+b'x)^m \, dx &= \frac{1}{(m+n+1)b} \left((a+bx)^{n+1} (a'+b'x)^m - m (ab'-a'b) \int (a+bx)^n (a'+b'x)^{m-1} \, dx \right) \cdot \\ \mathbf{38.} \int \frac{(a+bx)^n \, dx}{(a'+b'x)^m} &= -\frac{1}{(m-1)(ab'-a'b)} \left(\frac{(a+bx)^{n+1}}{(a'+b'x)^{m-1}} + (m-n-2)b \int \frac{(a+bx)^n \, dx}{(a'+b'x)^{m-1}} \right) \\ &= -\frac{1}{(m-n-1)b'} \left(\frac{(a+bx)^n}{(a'+b'x)^m} - nb \int \frac{(a+bx)^{n-1} \, dx}{(a'+b'x)^{m-1}} \right) \cdot \end{aligned}$$

6

39.
$$\int \frac{dx}{(a+bx)(a'+vx)} = \frac{1}{ab'-a'b} \cdot \log \frac{a'+b'x}{a+bx}.$$

$$40. \int \frac{dx}{(a+bx)^n (a'+b'x)^m} = \frac{1}{(m-1)(ab'-a'b)} \left(\frac{1}{(a+bx)^{n-1}(a'+b'x)^{m-1}} - (m+n-2)b \int \frac{dx}{(a+bx)^n (a'+b'x)^{m-1}} \right)$$

41.
$$\int \frac{x \, dx}{(a+bx)(a'+b'x)}$$
$$= \frac{1}{ab'-a'b} \left(\frac{a}{b} \log (a+bx) - \frac{a'}{b'} \log (a'+b'x) \right).$$

42.
$$\int \frac{dx}{(a+bx)^2(a'+b'x)} = \frac{1}{ab'-a'b} \left(\frac{1}{a+bx} + \frac{b'}{ab'-a'b} \log \frac{a'+b'x}{a+bx} \right).$$

43.
$$\int \frac{x \, dx}{(a+bx)^2 \, (a'+b'x)} = \frac{-a}{b \, (ab'-a'b) \, (a+bx)} - \frac{a'}{(ab'-a'b)^2} \log \frac{a'+b'x}{a+bx}$$

$$44. \int \frac{x^2 dx}{(a+bx)^2 (a'+b'x)} = \frac{a^3}{b^3 (ab'-a'b) (a+bx)} \\ + \frac{1}{(ab'-a'b)^3} \left[\frac{a'^2}{b'} \log (a'+b'x) + \frac{a (ab'-2 a'b)}{b^3} \log (a+bx) \right] \\ 45. \int (a+bx)^{\frac{1}{n}} dx = \frac{n}{(n+1)b} (a+bx)^{\frac{n+1}{n}}.$$

46.
$$\int \frac{dx}{(a+bx)^{\frac{1}{n}}} = \frac{n}{(n-1)b} (a+bx)^{\frac{n-1}{n}}.$$

B. — EXPRESSIONS INVOLVING $(a + bx^n)$. 47. $\int \frac{dx}{x^2 + x^2} = \frac{1}{c} \tan^{-1} \frac{x}{c}$ **48.** $\int \frac{dx}{x^2 - x^2} = \frac{1}{2c} \log \frac{c + x}{c - x}$ **49.** $\int \frac{dx}{a+bx^2} = \frac{1}{\sqrt{ab}} \tan^{-1}\left(x\sqrt{\frac{b}{a}}\right)$, if a > 0, b > 0. 50. $\int \frac{dx}{a+bx^2} = \frac{1}{2\sqrt{-ab}} \log \frac{\sqrt{a}+x\sqrt{-b}}{\sqrt{a}-x\sqrt{-b}}$, if a > 0, b < 0. 51. $\int \frac{dx}{(a+bx^2)^2} = \frac{x}{2a(a+bx^2)} + \frac{1}{2a} \int \frac{dx}{a+bx^2}.$ 52. $\int \frac{dx}{(a+bx^2)^{m+1}} = \frac{1}{2m\mu} \frac{x}{(a+bx^2)^m} + \frac{2m-1}{2m\mu} \int \frac{dx}{(a+bx^2)^m}$ 53. $\int \frac{x \, dx}{a + bx^2} = \frac{1}{2b} \log \left(x^2 + \frac{a}{b} \right)$ 54. $\int \frac{x \, dx}{(a+bx^{2})^{m+1}} = \frac{1}{2} \int \frac{dz}{(a+bz)^{m+1}}, \text{ where } z = x^{2}.$ 55. $\int \frac{dx}{x(a+bx^2)} = \frac{1}{2a} \log \frac{x^2}{a+bx^2}.$ 56. $\int \frac{x^2 dx}{a + bx^2} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a + bx^2} \cdot \cdot \cdot$ 57. $\int \frac{dx}{x^2(a+bx^2)} = -\frac{1}{ax} - \frac{b}{a} \int \frac{dx}{a+bx^2}$ 58. $\int \frac{x^2 dx}{(a+bx^2)^{m+1}} = \frac{-x}{2 \ mb \ (a+bx^2)^m} + \frac{1}{2 \ mb} \int \frac{dx}{(a+bx^2)^m} dx$ **59.** $\int \frac{dx}{x^2(a+bx^2)^{m+1}} = \frac{1}{a} \int \frac{dx}{x^2(a+bx^2)^m} - \frac{b}{a} \int \frac{dx}{(a+bx^2)^{m+1}}$

8

$$\begin{aligned} \mathbf{60.} & \int \frac{dx}{a + bx^3} = \frac{b}{3a} \left[\frac{1}{2} \log\left(\frac{(k + x)^3}{k^2 - kx + x^3} \right) + \sqrt{3} \tan^{-1} \frac{2x - k}{k \sqrt{3}} \right], \text{ where } bk^3 = a. \\ \mathbf{61.} & \int \frac{x \, dx}{a + bx^3} = \frac{1}{3bk} \left[\frac{1}{2} \log\left(\frac{k^2 - kx + x^3}{(k + x)^3} \right) + \sqrt{3} \tan^{-1} \frac{2x - k}{k \sqrt{3}} \right], \text{ where } bk^3 = a. \\ \mathbf{62.} & \int \frac{dx}{a + bx^n} = \frac{1}{an} \log \frac{x^n}{a + bx^n}; \quad \mathbf{63.} \int \frac{dx}{(a + bx^n)^{n+1}} = \frac{1}{a} \int \frac{dx}{(a + bx^n)^m} - \frac{b}{a} \int \frac{x^n \, dx}{(a + bx^n)^m}. \end{aligned}$$

$$\begin{aligned} \mathbf{64.} & \int \frac{x^m \, dx}{(a + bx^n)^{p+1}} = \frac{1}{b} \int \frac{dx}{(a + bx^n)^{p+1}}; \\ \mathbf{65.} & \int \frac{dx}{x^m (a + bx^n)^{p+1}} = \frac{1}{b} \int \frac{dx}{(a + bx^n)^{p-1}} - \frac{a}{b} \int \frac{dx}{(a + bx^n)^{p+1}}. \end{aligned}$$

$$\begin{aligned} \mathbf{66.} & \int \frac{dx}{x^m (a + bx^n)^{p+1}} = \frac{1}{a} \int \frac{dx}{(a + bx^n)^{p-1}} - \frac{b}{a} \int \frac{dx}{x^m (a + bx^n)^{p+1}}. \end{aligned}$$

$$\begin{aligned} \mathbf{66.} & \int x^{m-1} (a + bx^n)^p \, dx = \frac{1}{a^m} \int \frac{dx}{(a + bx^n)^{p+1}} - \frac{b}{a} \int \frac{dx}{x^m (a + bx^n)^{p+1}}. \end{aligned}$$

$$\begin{aligned} \mathbf{66.} & \int x^{m-1} (a + bx^n)^p \, dx = \frac{1}{a^m} \int \frac{dx}{(a + bx^n)^{p+1}} - \frac{b}{a^m} \int \frac{dx}{x^m (a + bx^n)^{p+1}}. \end{aligned}$$

•

Digitized by Google

C. — Expressions Involving $(a + bx + cx^2)$. Let $X = a + bx + cx^2$ and $q = 4 ac - b^2$, then **67.** $\int \frac{dx}{X} = \frac{2}{\sqrt{a}} \tan^{-1} \frac{2 \, cx + b}{\sqrt{q}}$, when q > 0. 68. $\int \frac{dx}{X} = \frac{1}{\sqrt{-q}} \log \frac{2cx+b-\sqrt{-q}}{2cx+b+\sqrt{-q}}$, when q < 0. $69. \int \frac{dx}{X^2} = \frac{2 cx + b}{aX} + \frac{2 c}{a} \int \frac{dx}{X}$ 70. $\int \frac{dx}{X^3} = \frac{2 cx + b}{a} \left(\frac{1}{2 X^2} + \frac{3 c}{a X} \right) + \frac{6 c^2}{a^2} \int \frac{dx}{X}.$ 71. $\int \frac{dx}{X^{n+1}} = \frac{2 cx + b}{n q X^n} + \frac{2 (2 n - 1) c}{q n} \int \frac{dx}{X^n}.$ 72. $\int \frac{x \, dx}{x} = \frac{1}{2c} \log x - \frac{b}{2c} \int \frac{dx}{x}$ 73. $\int \frac{x \, dx}{X^2} = -\frac{bx+2a}{aX} - \frac{b}{a} \int \frac{dx}{X}$ 74. $\int \frac{x \, dx}{X^{n+1}} = -\frac{2 \, a + bx}{n \, a \, X^n} - \frac{b \, (2 \, n - 1)}{n \, q} \int \frac{dx}{X^n}$ **75.** $\int \frac{x^2}{Y} dx = \frac{x}{a} - \frac{b}{2a^2} \log X + \frac{b^2 - 2ac}{2a^2} \int \frac{dx}{Y}$ **76.** $\int \frac{x^2}{X^2} dx = \frac{(b^2 - 2ac)x + ab}{caX} + \frac{2a}{a} \int \frac{dx}{X}.$ 77. $\int \frac{x^m dx}{X^{n+1}} = -\frac{x^{m-1}}{(2n-m+1)cX^n} - \frac{n-m+1}{2n-m+1} \cdot \frac{b}{c} \int \frac{x^{m-1} dx}{X^{n+1}}$ $+\frac{m-1}{2n-m+1}\cdot\frac{a}{c}\int \frac{x^{m-2}dx}{x^{n+1}}\cdot$

10

78. $\int \frac{dx}{x} = \frac{1}{2a} \log \frac{x^2}{y} - \frac{b}{2a} \int \frac{dx}{y}$ **79.** $\int \frac{dx}{x^2 X} = \frac{b}{2a^2} \log \frac{X}{x^2} - \frac{1}{ax} + \left(\frac{b^2}{2a^2} - \frac{c}{a}\right) \int \frac{dx}{X}$ 80. $\int \frac{dx}{x^m X^{n+1}} = -\frac{1}{(m-1)ax^{m-1}X^n} - \frac{n+m-1}{m-1} \cdot \frac{b}{a_n} \int \frac{dx}{x^{m-1}X^{n+1}}$ $-\frac{2n+m-1}{m-1}\cdot\frac{c}{a}\int\frac{dx}{x^{m-2}Y^{n+1}}\cdot$ 81. $\int X^n dx = \frac{1}{2(2n+1)c} \left((b+2cx) X^n + nq \int X^{n-1} dx \right).$ 82. $\int \frac{dx}{x X^{n}} = \frac{1}{2 a (n-1) X^{n-1}} - \frac{b}{2 a} \int \frac{dx}{X^{n}} + \frac{1}{a} \int \frac{dx}{x X^{n-1}} \cdot \frac{dx}{x X^{n-1}} = \frac{b}{2 a (n-1) X^{n-1}} - \frac{b}{2 a} \int \frac{dx}{x X^{n-1}} \cdot \frac{dx}{x X^{n-1}} + \frac{b}{2 a (n-1) X^{n-1}} - \frac{b}{2 (n-1) X^{n-1}}$ 83. $\int \frac{dx}{(a'+b'x)X} = \frac{1}{2(ab'^2 - a'bb' + a'^2c)} \left(b' (\log (a'+b'x))^2 + b'(ab'x) \right)^2 dx$ $-\log X$) + $(2 a'c - bb') \int \frac{dx}{X}$ 84. $\int (a'+b'x) X^n dx = \frac{b'X^{n+1}}{2(n+1)c} + \frac{2a'c-bb'}{2c} \int X^n dx.$ 85. $\int \frac{(a'+b'x)\,dx}{X^n} = -\frac{b'}{2(n-1)\,c\,X^{n-1}} + \frac{2\,a'c-bb'}{2\,c} \int \frac{dx}{X^n}.$ **86.** $\int (a'+b'x)^m X^n dx = \frac{1}{(m+2n+1)c} \left(b'(a'+b'x)^{m-1} X^{n+1} \right)^{m-1} (a'+b'x)^{m-1} X^{n+1} = \frac{1}{(m+2n+1)c} \left(b'(a'+b'x)^{m-1} X^{n+1} \right)^{m-1} X^{n+1} = \frac{1}{($ + $(m+n)(2 a'c - bb') \int (a' + b'x)^{m-1} X^n dx$ $-(m-1)(ab'^{2}-a'bb'+ca'^{2})\int (a'+b'x)^{m-2}X^{n}dx \cdot \cdot$

$$87. \int \frac{(a'+b'x)^m dx}{X^n} = \frac{1}{q (n-1)} \left(\frac{(b+2 cx)(a'+b'x)^m}{X^{n-1}} - 2 (m-2n+3) c \int \frac{(a'+b'x)^m dx}{X^{n-1}} + m (2 a'c - bb') \int \frac{(a'+b'x)^{m-1} dx}{X^{n-1}} \right)$$
$$= \frac{1}{(m-2n+1)c} \left(\frac{b' (a'+b'x)^{m-1}}{X^{n-1}} + (m-n) (2 a'c - bb') \int \frac{(a'+b'x)^{m-1} dx}{X^n} - (m-1) (ab'' - a'bb' + ca'') \int \frac{(a'+b'x)^{m-2} dx}{X^n} \right)$$

$$88. \int \frac{X^n dx}{(a'+b'x)^n} = \frac{1}{b^{l^2}(m-1)} \left(\frac{-b'X^n}{(a'+b'x)^{m-1}} + n (bb'-2 a'c) \int \frac{X^{n-1} dx}{(a'+b'x)^{m-1}} + 2 nc \int \frac{X^{n-1} dx}{(a'+b'x)^{m-2}} \right)$$
$$= -\frac{1}{(m-2n-1)b^{l^2}} \left(\frac{+b'X^n}{(a'+b'x)^{m-1}} + 2 b'n (ab^{l^2}-a'bb'+ca^{l^2}) \int \frac{X^{n-1} dx}{(a'+b'x)^m} + n (bb'-2 a'c) \int \frac{X^{n-1} dx}{(a'+b'x)^{m-1}} \right).$$

$$89. \int \frac{dx}{(a'+b'x)^m X^n} = -\frac{1}{(m-1)(ab'^2 - a'bb' + ca'^2)} \left(\frac{b'}{(a'+b'x)^{m-1} X^{n-1}} + (m+n-2)(bb'-2ca') \int \frac{dx}{(a'+b'x)^{m-1} X^n} + (m+2n-3)c \int \frac{dx}{(a'+b'x)^{m-2} X^n}\right)$$
$$= \frac{1}{2(ab'^2 - a'bb' + ca'^2)} \left(\frac{b'}{(n-1)(a'+b'x)^{m-1} X^{n-1}} + (2a'c - bb') \int \frac{dx}{(a'+b'x)^{m-1} X^n} + \frac{(m+2n-3)b'^2}{n+1} \int \frac{dx}{(a'+b'x)^m X^{n-1}}\right).$$

If
$$ab'^2 - a'bb' + ca'^2 = 0$$
,

$$\int \frac{dx}{(a'+b'x)^m X^n} = \frac{-1}{(m+n-1)(bb'-2a'c)} \left(\frac{b'}{(a'+b'x)^m X^{n-1}} + (m+2n-2)c \int \frac{dx}{(a'+b'x)^{m-1} X^n}\right)$$

D. --- RATIONAL FRACTIONS.

Every proper fraction can be represented by the general form:

$$\frac{f(x)}{F(x)} = \frac{g_1 x^{n-1} + g_2 x^{n-2} + g_8 x^{n-3} + \dots + g_n}{x^n + k_1 x^{n-1} + k_2 x^{n-2} + \dots + k_n}.$$

If a, b, c, etc., are the roots of the equation F(x) = 0, so that

$$F(x) = (x-a)^{p} (x-b)^{q} (x-c)^{r} \cdots,$$

RATIONAL ALGEBRAIC FUNCTIONS.

then

where the numerators of the separate fractions may be determined by the equations

$$A_{m} = \frac{\phi_{1}^{(m-1)}(a)}{(m-1)!}, \quad B_{m} = \frac{\phi_{2}^{(m-1)}(b)}{(m-1)!} \quad \text{etc., etc.}$$

$$\phi_{1}(x) = \frac{f(x)(x-a)^{p}}{F(x)}, \quad \phi_{2}(x) = \frac{f(x)(x-b)^{q}}{F(x)}, \quad \text{etc., etc.}$$

If a, b, c, etc., are single roots, then $p = q = r = \cdots = 1$, and

$$\frac{f(x)}{F(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} \cdots$$

where

$$A = rac{f(a)}{F'(a)}, \quad B = rac{f(b)}{F'(b)}, \; ext{etc.}$$

The simpler fractions, into which the original fraction is thus divided, may be integrated by means of the formulas:

90.
$$\int \frac{h \, dx}{(mx+n)^l} = \int \frac{h \, d(mx+n)}{m \, (mx+n)^l} = \frac{h}{m \, (1-l) \, (mx+n)^{l-1}},$$

and $\int \frac{h \, dx}{mx+n} = \frac{h}{m} \log \, (mx+n).$

If any of the roots of the equation f(x) = 0 are imaginary, the parts of the integral which arise from conjugate roots can be combined and the integral brought into a real form. The following formula, in which $i = \sqrt{-1}$, is often useful in combining logarithms of conjugate complex quantities:

$$\log (x \pm yi) = \frac{1}{2} \log (x^2 + y^2) \pm i \tan^{-1} \frac{y}{x}.$$

The identities given below are sometimes convenient:

$$\frac{1}{(a+bx^2)(a'+b'x^2)} \equiv \frac{1}{a'b-ab'} \cdot \left[\frac{b}{a+bx^2} - \frac{b'}{a'+b'x^2}\right],$$
$$\frac{m+nx}{(k+lx)(a+bx+cx^2)} \equiv \frac{1}{al^2+ck^2-bkl} \cdot \left[\frac{l(ml-nk)}{k+lx} + \frac{c(nk-ml)x+(aln+ckm-blm)}{a+bx+cx^2}\right],$$
$$\frac{l+mx^n}{(a+bx^n)(a'+b'x^n)} \equiv \frac{1}{a'b-ab'} \cdot \left[\frac{bl-am}{a+bx^n} + \frac{a'm-b'l}{a'+b'x^n}\right].$$

III. IRRATIONAL ALGEBRAIC FUNCTIONS.

A. — Expressions Involving $\sqrt{a+bx}$.

The substitution of a new variable of integration, $y = \sqrt{a + bx}$, gives

91. $\int \sqrt{a + bx} \, dx = \frac{2}{3b} \sqrt{(a + bx)^3}.$ 92. $\int x \sqrt{a + bx} \, dx = -\frac{2(2a - 3bx)\sqrt{(a + bx)^3}}{15b^2}.$ 93. $\int x^2 \sqrt{a + bx} \, dx = \frac{2(8a^2 - 12abx + 15b^2x^2)\sqrt{(a + bx)^3}}{105b^3}.$ 94. $\int \frac{\sqrt{a + bx}}{x} \, dx = 2\sqrt{a + bx} + a \int \frac{dx}{x\sqrt{a + bx}}.$ 95. $\int \frac{dx}{\sqrt{a + bx}} = \frac{2\sqrt{a + bx}}{b}.$ 96. $\int \frac{x \, dx}{\sqrt{a + bx}} = -\frac{2(2a - bx)}{3b^2}\sqrt{a + bx}.$ 97. $\int \frac{x^2 \, dx}{\sqrt{a + bx}} = \frac{2(8a^2 - 4abx + 3b^2x^3)}{15b^3}\sqrt{a + bx}.$ 98. $\int \frac{dx}{x\sqrt{a + bx}} = \frac{1}{\sqrt{a}}\log\left(\frac{\sqrt{a + bx} - \sqrt{a}}{\sqrt{a + bx} + \sqrt{a}}\right), \text{ for } a > 0.$

99.
$$\int \frac{dx}{x\sqrt{a+bx}} = \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a+bx}{-a}}$$
, for $a < 0$.

IRRATIONAL ALGEBRAIC FUNCTIONS.

$$100. \int \frac{dx}{x^{2}\sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{a+bx}}.$$

$$101. \int (a+bx)^{\pm \frac{n}{2}} dx = \frac{2}{b} \int y^{1\pm n} dy = \frac{2(a+bx)^{\frac{2\pm n}{2}}}{b(2\pm n)}.$$

$$102. \int x(a+bx)^{\pm \frac{n}{2}} dx = \frac{2}{b^{2}} \left[\frac{(a+bx)^{\frac{4\pm n}{2}}}{4\pm n} - \frac{a(a+bx)^{\frac{2\pm n}{2}}}{2\pm n} \right].$$

$$103. \int \frac{x^{m} dx}{\sqrt{a+bx}} = \frac{2x^{m}\sqrt{a+bx}}{(2m+1)b} - \frac{2ma}{(2m+1)b} \int \frac{x^{m-1} dx}{\sqrt{a+bx}}.$$

$$104. \int \frac{dx}{x^{n}\sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{(n-1)ax^{n-1}} - \frac{(2n-3)b}{(2n-2)a} \int \frac{dx}{x^{n-1}\sqrt{a+bx}}.$$

$$105. \int \frac{(a+bx)^{\frac{n}{2}} dx}{x} = b \int (a+bx)^{\frac{n-2}{2}} dx + a \int \frac{(a+bx)^{\frac{n-2}{2}}}{x} dx.$$

$$106. \int \frac{dx}{x(a+bx)^{\frac{n}{2}}} = \frac{1}{a} \int \frac{dx}{x(a+bx)^{\frac{m-2}{2}}} - \frac{b}{a} \int \frac{dx}{(a+bx)^{\frac{n}{2}}}.$$

$$107. \int f(x, \sqrt[n]{a+bx}) dx = \frac{n}{b} \int f\left(\frac{z^{n}-a}{b}, z\right) z^{n-1} dz,$$
where $z^{n} = a + bx.$

$$108. \int (a+bx)^{\frac{m}{n}} dx = \frac{n(a+bx)^{\frac{m+n}{n}}}{b(m+n)}.$$

$$109. \int f(x, (a+bx)^{\frac{m}{n}}, (a+bx)^{\frac{p}{n}}, \cdots) dx$$

$$= \frac{s}{b} \int f\left(\frac{y^{t}-a}{b}, y^{\frac{m}{n}}, y^{\frac{m}{n}}, y^{\frac{m}{n}}, \cdots\right) y^{s-1} dy,$$

where $y^s = a + bx$, and s is the least common multiple of n, q, etc.

,

17

18

B. -- EXPRESSIONS INVOLVING BOTH $\sqrt{a + bx}$ AND $\sqrt{a' + b'x}$. Let u = a + bx, v = a' + b'x, and k = ab' - a'b, then 110. $\int \sqrt{uv} \, dx = \frac{k + 2 bv}{4 bb'} \sqrt{uv} - \frac{k^2}{8 bb'} \int \frac{dx}{\sqrt{uv}}$. 111. $\int \frac{\sqrt{v} \, dx}{\sqrt{u}} = \frac{1}{b} \sqrt{uv} - \frac{k}{2b} \int \frac{dx}{\sqrt{uv}}$. 112. $\int \frac{x \, dx}{\sqrt{uv}} = \frac{\sqrt{uv}}{bb'} - \frac{ab' + a'b}{2 bb'} \int \frac{dx}{\sqrt{uv}}$. 113. $\int \frac{dx}{\sqrt{uv}} = \frac{2}{\sqrt{bb'}} \log(\sqrt{bb'u} + b\sqrt{v})$ $= \frac{2}{\sqrt{-bb'}} \tan^{-1} \frac{\sqrt{-bb'u}}{b\sqrt{v}}$ $= -\frac{1}{\sqrt{-bb'}} \sin^{-1} \frac{2 bb'x + a'b + ab'}{k}$.

114.
$$\int \frac{dx}{v\sqrt{u}} = \frac{1}{\sqrt{kb'}} \log \frac{b'\sqrt{u} - \sqrt{kb'}}{b'\sqrt{u} + \sqrt{kb'}} = \frac{2}{\sqrt{-kb'}} \tan^{-1} \frac{b'\sqrt{u}}{\sqrt{-kb'}}.$$

$$115. \int \frac{dx}{v\sqrt{uv}} = -\frac{2\sqrt{u}}{k\sqrt{v}}.$$

$$116. \int v^m \sqrt{u} \, dx = \frac{1}{(2m+3)b'} \left(2v^{m+1}\sqrt{u} + k \int \frac{v^m \, dx}{\sqrt{u}} \right).$$

$$117. \int \frac{\sqrt{u} \, dx}{v^m} = -\frac{1}{(2m-3)b'} \left(\frac{2\sqrt{u}}{v^{m-1}} + k \int \frac{dx}{v^m\sqrt{u}} \right)$$

$$= \frac{1}{(m-1)b'} \left(-\frac{\sqrt{u}}{v^{m-1}} + \frac{1}{2}b \int \frac{dx}{v^{m-1}\sqrt{u}} \right).$$

$$118. \int \frac{v^m \, dx}{\sqrt{u}} = \frac{2}{(2m+1)b} \left(v^m \sqrt{u} - mk \int \frac{v^{m-1} \, dx}{\sqrt{u}} \right).$$

119.
$$\int \frac{dx}{v^m \sqrt{u}} = -\frac{1}{(m-1)k} \left(\frac{\sqrt{u}}{v^{m-1}} + (m-\frac{3}{2})b \int \frac{dx}{v^{m-1} \sqrt{u}} \right)^{\frac{1}{2}}$$

120.
$$\int v^{m} u^{n-\frac{1}{2}} dx = \frac{1}{(2m+2n+1)b'} \left(2v^{m+1} u^{n-\frac{1}{2}} + (2n-1)k \int v^{m} u^{n-\frac{1}{2}} dx \right).$$

121.
$$\int v^{m} u^{-(n+i)} dx = \frac{1}{(2n-1)k} \left(2 v^{m+1} u^{-(n-i)} - (2m-2n+3)b' \int v^{m} u^{-(n-i)} dx \right)$$
$$= \frac{2}{(2n-1)b} \left(-v^{m} u^{-(n-i)} + mb' \int v^{m-1} u^{-(n-i)} dx \right).$$

122.
$$\int v^{-m} u^{(n-\frac{1}{2})} dx = \frac{-1}{(2m-2n-1)b'} \left(2u^{n-\frac{1}{2}}v^{-(m-1)} + (2n-1)k\int u^{n-\frac{1}{2}}v^{-m} dx \right)$$
$$= \frac{1}{(m-1)b'} \left(-u^{n-\frac{1}{2}}v^{-(m-1)} + (n-\frac{1}{2})b\int u^{n-\frac{1}{2}}v^{-(m-1)} dx \right).$$

123.
$$\int v^{-m} u^{-(n+1)} dx = \frac{1}{(2n-1)k} \left(2 v^{-(m-1)} u^{-(n-1)} + (2m+2n-3)b' \int v^{-m} u^{-(n-1)} dx \right).$$

Digitized by Google

.

C. — Expressions* Involving $\sqrt{x^2 \pm a^2}$ and $\sqrt{a^2 - x^2}$. 124. $\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \log \left(x + \sqrt{x^2 \pm a^2} \right) \right].$ 125. $\int \sqrt{a^2 - x^2} \, dx = \frac{1}{2} \left(x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right).$ 126. $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \log(x + \sqrt{x^2 \pm a^2}).$ 127. $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}\frac{x}{a}$, or $-\cos^{-1}\frac{x}{a}$. 128. $\int \frac{dx}{\pi^{3}/a^{2}} = \frac{1}{a}\cos^{-1}\frac{a}{x}, \text{ or } \frac{1}{a}\sec^{-1}\frac{x}{a}$ 129. $\int \frac{dx}{x\sqrt{a^2+x^2}} = -\frac{1}{a}\log\left(\frac{a+\sqrt{a^2\pm x^2}}{x}\right).$ 130. $\int \frac{\sqrt{a^2 \pm x^2}}{a} dx = \sqrt{a^2 \pm x^2} - a \log \frac{a + \sqrt{a^2 \pm x^2}}{a}.$ 131. $\int \frac{\sqrt{x^2 - a^2}}{a} dx = \sqrt{x^2 - a^2} - a \cos^{-1} \frac{a}{x}$ 132. $\int \frac{x \, dx}{\sqrt{a^2 \pm a^2}} = \pm \sqrt{a^2 \pm x^2}.$ 133. $\int \frac{x \, dx}{\sqrt{x^2 - a^2}} = \sqrt{x^2 - a^2}.$ 134. $\int x \sqrt{x^2 \pm a^2} \, dx = \frac{1}{8} \sqrt{(x^2 \pm a^2)^3}.$ 135. $\int x \sqrt{a^2 - x^2} \, dx = -\frac{1}{8} \sqrt{(a^2 - x^2)^3}.$

* These equations are all special cases of more general equations given in the next section. For additional formulas consult Equation 66.

20

FORMULAS

PLANE TRIGONOMETRY

1. $\sin^2 A + \cos^2 A = 1$. 2. $\tan A = \frac{\sin A}{\cos A}$. 3. $\begin{cases} \sin A \times \csc A = 1. \\ \cos A \times \sec A = 1. \\ \tan A \times \cot A = 1. \end{cases}$ 4. $\sin(x+y) = \sin x \cos y + \cos x \sin y.$ 5. $\cos(x+y) = \cos x \cos y - \sin x \sin y$. 6. $\tan (x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$ 7. $\cot(x+y) = \frac{\cot x \cot y - 1}{\cot y + \cot x}$ 8. $\sin(x-y) = \sin x \cos y - \cos x \sin y$. 9. $\cos(x-y) = \cos x \cos y + \sin x \sin y$. 10. $\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$ 11. $\cot (x-y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$ 12. $\sin 2x = 2\sin x \cos x.$ 13. $\cos 2x = \cos^2 x - \sin^2 x$. 14. $\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$ 139

	140	PLANE TRIGONOMETRY
, 1	15.	$\cot 2x = \frac{\cot^2 x - 1}{2 \cot x}.$
1	16.	$\sin \frac{1}{2} z = \pm \sqrt{\frac{1 - \cos z}{2}}.$
1		$\cos \frac{1}{2}z = \pm \sqrt{\frac{1+\cos z}{2}}$
1,		$\tan \frac{1}{2}z = \pm \sqrt{\frac{1 - \cos z}{1 + \cos z}}.$
× 1($\cot \frac{1}{2}z = \pm \sqrt{\frac{1+\cos z}{1-\cos z}}.$
1{	20. 21.	$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$ $\sin A - \sin B = 2 \cos \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$
19		$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$ $\cos A - \cos B = -2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B)$
13		$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$
13	25.	$\frac{a}{b} = \frac{\sin A}{\sin B}.$
134		$a^2 = b^2 + c^2 - 2 bc \cos A.$
135	27.	$\frac{a-b}{a+b} = \frac{\tan \frac{1}{2}(A-B)}{\tan \frac{1}{2}(A+B)}.$
* next		$\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{bc}}.$
	29.	$\cos \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}.$

Digitized by Google

. .

FORMULAS

30.
$$\tan \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$
.
31. $\sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = r$.
32. $\tan \frac{1}{2}A = \frac{r}{s-a}$. $A = \frac{F}{S}$
33. $F = \frac{1}{2}ac \sin B$.
34. $F = \frac{a^2 \sin B \sin C}{2 \sin (B+C)}$.
35. $F = \sqrt{s(s-a)(s-b)(s-c)}$.
36. $F = \frac{abc}{4R}$.
37. $F = \frac{1}{2}r(a+b+c) = rs$.
 $F = \sqrt{a+b+c}$

· B).

B).

— B).

Digitized by Google

141

$$\begin{aligned} &136. \int \sqrt{(x^2 \pm a^2)^8} \, dx \\ &= \frac{1}{4} \left[x \sqrt{(x^2 \pm a^2)^8} \pm \frac{3 a^2 x}{2} \sqrt{x^2 \pm a^3} + \frac{3 a^4}{2} \log \left(x + \sqrt{x^4 \pm a^3} \right) \right] \cdot \\ &137. \int \sqrt{(a^2 - x^2)^8} \, dx \\ &= \frac{1}{4} \left[x \sqrt{(a^2 - x^2)^3} + \frac{3 a^2 x}{2} \sqrt{a^3 - x^3} + \frac{3 a^4}{2} \sin^{-1} \frac{x}{a} \right] \cdot \\ &138. \int \frac{dx}{\sqrt{(x^2 \pm a^2)^8}} = \frac{\pm x}{a^2 \sqrt{x^2 \pm a^2}} \cdot \\ &139. \int \frac{dx}{\sqrt{(a^2 - x^3)^8}} = \frac{-1}{a^2 \sqrt{a^2 - x^2}} \cdot \\ &140. \int \frac{x \, dx}{\sqrt{(a^2 - x^2)^8}} = \frac{-1}{\sqrt{x^2 \pm a^2}} \cdot \\ &141. \int \frac{x \, dx}{\sqrt{(a^2 - x^2)^8}} = \frac{1}{\sqrt{a^2 - x^2}} \cdot \\ &142. \int x \sqrt{(x^2 \pm a^2)^8} \, dx = \frac{1}{8} \sqrt{(x^2 \pm a^2)^8} \cdot \\ &143. \int x \sqrt{(a^2 - x^2)^8} \, dx = -\frac{1}{8} \sqrt{(a^2 - x^2)^8} \cdot \\ &144. \int x^2 \sqrt{x^2 \pm a^2} \, dx \\ &= \frac{x}{4} \sqrt{(x^2 \pm a^2)^8} \mp \frac{a^8}{8} x \sqrt{x^2 \pm a^3} - \frac{a^4}{8} \log \left(x + \sqrt{x^2 \pm a^2} \right) \cdot \\ &145. \int x^2 \sqrt{a^3 - x^2} \, dx \\ &= -\frac{x}{4} \sqrt{(a^2 - x^2)^8} + \frac{a^2}{8} \left(x \sqrt{a^3 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right) \cdot \end{aligned}$$

- 146. $\int \frac{\sqrt{a^2 \pm x^2} \, dx}{x^3} = -\frac{\sqrt{a^2 \pm x^2}}{2 \, x^2} \pm \frac{1}{2} \int \frac{dx}{x^{\sqrt{a^2 \pm a^2}}}.$ 147. $\int x^3 \sqrt{a^2 \pm x^2} \, dx = (\pm \frac{1}{5} x^2 - \frac{1}{15} a^2) \sqrt{(a^2 \pm x^2)^3}.$ 148. $\int \frac{dx}{x^3 \sqrt{a^2 + x^2}} = -\frac{\sqrt{a^2 \pm x^2}}{2 a^2 x^2} \mp \frac{1}{2 a^2} \int \frac{dx}{x \sqrt{a^2 + x^2}}$ 149. $\int \frac{dx}{x^3 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{2 a^2 x^3} + \frac{1}{2 a^3} \sec^{-1}\left(\frac{x}{a}\right).$ 150. $\int \frac{x^2 dx}{\sqrt{x^2 \pm a^2}} = \frac{x}{2} \sqrt{x^2 \pm a^2} \mp \frac{a^2}{2} \log (x + \sqrt{x^2 \pm a^2}).$ 151. $\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$ 152. $\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \pm \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$ 153. $\int \frac{dx}{x^2 \sqrt{x^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x}$ 154. $\int \frac{\sqrt{x^2 \pm a^2} \, dx}{x^2} = -\frac{\sqrt{x^2 \pm a^2}}{x} + \log \left(x + \sqrt{x^2 \pm a^2}\right).$ 155. $\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x^2} - \sin^{-1} \frac{x}{x}.$ 156. $\int \frac{x^2 dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{-x}{\sqrt{x^2 \pm a^2}} + \log(x + \sqrt{x^2 \pm a^2}).$
- 157. $\int \frac{x^2 dx}{\sqrt{(a^2 x^2)^3}} = \frac{x}{\sqrt{a^2 x^2}} \sin^{-1} \frac{x}{a}.$

 $\mathbf{22}$

158.
$$\int \frac{f(x^2) dx}{\sqrt{a + cx^2}} = g \int f\left(\frac{au^2}{g^2 - cu^2}\right) \frac{du}{(g^2 - cu^2)},$$

where $u = \frac{gx}{\sqrt{a + cx^2}}$.

159.
$$\int \frac{xf(x^2) dx}{\sqrt{a + cx^2}} = \frac{1}{c} \int f\left(\frac{u^2 - a}{c}\right) du$$
, where $u^2 = a + cx^2$.

D. — EXPRESSIONS INVOLVING
$$\sqrt{a + bx + cx^2}$$
.

Let $X = a + bx + cx^2$, $q = 4 ac - b^2$, and $k = \frac{4c}{q}$. In order to rationalize the function $f(x, \sqrt{a + bx + cx^2})$ we may put $\sqrt{a + bx + cx^2} = \sqrt{\pm c} \sqrt{A + Bx \pm x^2}$, according as c is positive or negative, and then substitute for x a new variable z, such that

$$z = \sqrt{A + Bx + x^2} \pm x, \text{ if } c > 0.$$

$$z = \frac{\sqrt{A + Bx - x^2} - \sqrt{A}}{x}, \text{ if } c < 0 \text{ and } \frac{a}{-c} > 0.$$

$$\dot{z} = \sqrt{\frac{x - \beta}{a - x}}, \text{ where } a \text{ and } \beta \text{ are the roots of the equation}$$

$$A + Bx - x^2 = 0, \text{ if } c < 0 \text{ and } \frac{a}{-c} < 0.$$

By rationalization, or by the aid of reduction formulas, may be obtained the values of the following integrals:

160.
$$\int \frac{dx}{\sqrt{X}} = \frac{1}{\sqrt{c}} \log \left(\sqrt{X} + x\sqrt{c} + \frac{b}{2\sqrt{c}} \right), \text{ if } c > 0.$$

161.
$$\int \frac{dx}{\sqrt{X}} = \frac{1}{\sqrt{-c}} \sin^{-1} \left(\frac{-2 cx - b}{\sqrt{b^2 - 4 ac}} \right), \text{ if } c < 0.$$

ç

 $\mathbf{23}$

$$\begin{aligned} &\mathbf{162.} \quad \int \frac{dx}{X\sqrt{X}} = \frac{2(2\ cx + b)}{q\sqrt{X}} \\ &\mathbf{163.} \quad \int \frac{dx}{X^2\sqrt{X}} = \frac{2(2\ cx + b)}{3\ q\sqrt{X}} \left(\frac{1}{X} + 2\ k\right) \\ &\mathbf{164.} \quad \int \frac{dx}{X^n\sqrt{X}} = \frac{2(2\ cx + b)\sqrt{X}}{(2\ n - 1)\ qX^n} + \frac{2\ k\ (n - 1)}{2\ n - 1} \int \frac{dx}{X^{n-1}\sqrt{X}} \\ &\mathbf{165.} \quad \int \sqrt{X}\ dx = \frac{(2\ cx + b)\sqrt{X}}{4\ c} + \frac{1}{2\ k} \int \frac{dx}{\sqrt{X}} \\ &\mathbf{166.} \quad \int X\sqrt{X}\ dx = \frac{(2\ cx + b)\sqrt{X}}{4\ c} + \frac{1}{2\ k} \int \frac{dx}{\sqrt{X}} \\ &\mathbf{166.} \quad \int X\sqrt{X}\ dx = \frac{(2\ cx + b)\sqrt{X}}{8\ c} \left(X + \frac{3}{2\ k}\right) + \frac{3}{8\ k^2} \int \frac{dx}{\sqrt{X}} \\ &\mathbf{167.} \quad \int X^2\sqrt{X}\ dx \\ &= \frac{(2\ cx + b)\sqrt{X}}{12\ c} \left(X^2 + \frac{5\ X}{4\ k} + \frac{15}{8\ k^2}\right) + \frac{5}{16\ k^3} \int \frac{dx}{\sqrt{X}} \\ &\mathbf{168.} \quad \int X^n\sqrt{X}\ dx = \frac{(2\ cx + b)\ X^n\sqrt{X}}{4\ (n + 1)\ c} + \frac{2\ n + 1}{2\ (n + 1)\ k} \int \frac{X^n\ dx}{\sqrt{X}} \\ &\mathbf{169.} \quad \int \frac{x\ dx}{\sqrt{X}} = \frac{\sqrt{X}}{c} - \frac{b}{2\ c} \int \frac{dx}{\sqrt{X}} \\ &\mathbf{170.} \quad \int \frac{x\ dx}{\sqrt{X}} = -\frac{2\ (bx + 2\ a)}{q\sqrt{X}} \\ &\mathbf{171.} \quad \int \frac{x\ dx}{\sqrt{X}} = -\frac{2\ (bx + 2\ a)}{q\sqrt{X}} \\ &\mathbf{172.} \quad \int \frac{x^2\ dx}{\sqrt{X}} = \left(\frac{x}{2\ c} - \frac{3\ b}{4\ c^2}\right)\sqrt{X} + \frac{3\ b^2 - 4\ ac}{8\ c^2} \int \frac{dx}{\sqrt{X}} \\ &\mathbf{173.} \quad \int \frac{x^2\ dx}{\sqrt{X}\sqrt{X}} = \frac{(2\ b^3 - 4\ ac)\ x + 2\ ab}{cq\ \sqrt{X}} \\ \end{aligned}$$

 $\mathbf{24}$

É

•

1

$$\begin{aligned} & 174. \int \frac{x^3 dx}{X^n \sqrt{X}} \\ &= \frac{(2b^2 - 4ac)x + 2ab}{(2n-1)cq} + \frac{4ac + (2n-3)b^3}{(2n-1)cq} \int \frac{dx}{X^{n-1}\sqrt{X}} \\ & 175. \int \frac{x^3 dx}{\sqrt{X}} \\ &= \left(\frac{x^3}{3c} - \frac{5bx}{12c^3} + \frac{5b^2}{8c^3} - \frac{2a}{3c^3}\right)\sqrt{X} + \left(\frac{3ab}{4c^3} - \frac{5b^3}{16c^3}\right)\int \frac{dx}{\sqrt{X}} \\ & 176. \int x\sqrt{X} \, dx = \frac{X\sqrt{X}}{3c} - \frac{b}{2c}\int \sqrt{X} \, dx. \\ & 177. \int xX\sqrt{X} \, dx = \frac{X^4\sqrt{X}}{5c} - \frac{b}{2c}\int X\sqrt{X} \, dx. \\ & 178. \int \frac{xX^n \, dx}{\sqrt{X}} = \frac{X^n\sqrt{X}}{(2n+1)c} - \frac{b}{2c}\int \frac{X^n \, dx}{\sqrt{X}} \\ & 179. \int x^2\sqrt{X} \, dx = \left(x - \frac{5b}{6c}\right)\frac{X\sqrt{X}}{4c} + \frac{5b^2 - 4ac}{16c^2}\int \sqrt{X} \, dx. \\ & 180. \int \frac{x^2X^n \, dx}{\sqrt{X}} = \frac{xX^n\sqrt{X}}{2(n+1)c} - \frac{(2n+3)b}{4(n+1)c}\int \frac{xX^n \, dx}{\sqrt{X}} \\ & -\frac{a}{2(n+1)c}\int \frac{X^n \, dx}{\sqrt{X}} \\ & 181. \int x^3\sqrt{X} \, dx = \left(x^2 - \frac{7bx}{8c} + \frac{35b^2}{48c^2} - \frac{2a}{3c}\right)\frac{X\sqrt{X}}{5c} \\ & + \left(\frac{3ab}{8c^2} - \frac{7b^3}{32c^3}\right)\int \sqrt{X} \, dx. \\ & 182. \int \frac{dx}{x\sqrt{X}} = -\frac{1}{\sqrt{a}}\log\left(\frac{\sqrt{X} + \sqrt{a}}{x} + \frac{b}{2\sqrt{a}}\right), \text{ if } a > 0. \end{aligned}$$

25

.

٠

$$\begin{aligned} &183. \int \frac{dx}{x\sqrt{X}} = \frac{1}{\sqrt{-a}} \sin^{-1} \left(\frac{bx+2a}{x\sqrt{b^2-4ac}} \right), \text{ if } a < 0. \\ &184. \int \frac{dx}{x\sqrt{X}} = -\frac{2\sqrt{X}}{bx}, \text{ if } a = 0. \\ &185. \int \frac{dx}{x^{2}\sqrt{X}} = -\frac{2\sqrt{X}}{(2n-1)aX^n} + \frac{1}{a} \int \frac{dx}{xX^{n-1}\sqrt{X}} - \frac{b}{2a} \int \frac{dx}{X^n\sqrt{X}}. \\ &186. \int \frac{dx}{x^2\sqrt{X}} = -\frac{\sqrt{X}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{X}}. \\ &187. \int \frac{\sqrt{X}dx}{x} = \sqrt{X} + \frac{b}{2} \int \frac{dx}{\sqrt{X}} + a \int \frac{dx}{x\sqrt{X}}. \\ &188. \int \frac{X^n dx}{x\sqrt{X}} = \frac{X^n}{(2n-1)\sqrt{X}} + a \int \frac{X^{n-1} dx}{x\sqrt{X}} + \frac{b}{2} \int \frac{X^{n-1} dx}{\sqrt{X}}. \\ &189. \int \frac{\sqrt{X}dx}{x^2} = -\frac{\sqrt{X}}{x} + \frac{b}{2} \int \frac{dx}{x\sqrt{X}} + c \int \frac{dx}{\sqrt{X}}. \\ &190. \int \frac{x^m dx}{X^n\sqrt{X}} = \frac{1}{c} \int \frac{x^{m-2} dx}{X^{n-1}\sqrt{X}} - \frac{b}{c} \int \frac{x^{m-1} dx}{x^n\sqrt{X}} - \frac{a}{c} \int \frac{x^{m-2} dx}{X^n\sqrt{X}}. \\ &191. \int \frac{x^m X^n dx}{\sqrt{X}} = \frac{x^{m-1} X^n \sqrt{X}}{(2n+m)c} - \frac{(2n+2m-1)b}{2c(2n+m)} \int \frac{x^{m-1} X^n dx}{\sqrt{X}} \\ &- \frac{(m-1)a}{(2n+m)c} \int \frac{x^{m-2} X^n dx}{\sqrt{X}}. \\ &192. \int \frac{dx}{x^m X^n \sqrt{X}} = -\frac{\sqrt{X}}{(m-1)ax^{m-1} X^n} - \frac{(2n+2m-3)b}{2a(m-1)} \int \frac{dx}{x^{m-1} X^n \sqrt{X}} \\ &- \frac{(2n+m-2)c}{(m-1)a} \int \frac{dx}{x^{m-2} X^n \sqrt{X}}. \end{aligned}$$

193.
$$\int \frac{X^{n} dx}{x^{m} \sqrt{X}} = -\frac{X^{n-1} \sqrt{X}}{(m-1)x^{m-1}} + \frac{(2n-1)b}{2(m-1)} \int \frac{X^{n-1} dx}{x^{m-1} \sqrt{X}} + \frac{(2n-1)c}{m-1} \int \frac{X^{n-1} dx}{x^{m-2} \sqrt{X}}.$$

194.
$$\int f(x, \sqrt{(x-a)(x-b)}) dx$$

= 2 (a - b) $\int f\left\{\frac{bu^2 - a}{u^2 - 1}, \frac{u(b-a)}{u^2 - 1}\right\} \frac{u \, du}{(u^2 - 1)^2}$
where $u^2(x-b) = x - a$.

E. — EXPRESSIONS INVOLVING PRODUCTS OF POWERS OF

$$(a' + b'x) \text{ AND } \sqrt{a + bx + cx^2}.$$
Let $X = a + bx + cx^2$, $v = a' + b'x$, $q = 4 ac - b^3$,
 $\beta = bb' - 2 a'c$, $k = ab'^2 - a'bb' + ca'^2$, then
195. $\int \frac{dx}{v\sqrt{X}} = \frac{1}{\sqrt{k}} \log \frac{2k + \beta v - 2 b'\sqrt{kX}}{v}$
 $= \frac{1}{\sqrt{-k}} \tan^{-1} \frac{2k + \beta v}{2b'\sqrt{-kX}}$
 $= \frac{1}{\sqrt{-k}} \sin^{-1} \frac{2k + \beta v}{b'v\sqrt{-q}}, \text{ if } k \neq 0.$
196. $\int \frac{dx}{dx} = -\frac{2 b'\sqrt{X}}{v}, \text{ if } k = 0$:

96.
$$\int \frac{dx}{v\sqrt{X}} = -\frac{2}{v} \frac{v\sqrt{X}}{\beta v}, \text{ if } k = 0:$$

thus,
$$\int \frac{dx}{(x \pm 1)\sqrt{x^2 - 1}} = \pm \sqrt{\frac{x \pm 1}{x \pm 1}}.$$

or
$$\int \frac{dx}{dx} = -\frac{b'\sqrt{X}}{\beta} \int \frac{dx}{dx}$$

197.
$$\int \frac{dx}{v^2 \sqrt{X}} = -\frac{b \sqrt{X}}{kv} - \frac{p}{2k} \int \frac{dx}{v \sqrt{X}}.$$

198.
$$\int \frac{dx}{v^2 \sqrt{X}} = -\frac{2b'\sqrt{X}}{3\beta v^2} - \frac{2c}{3\beta} \int \frac{dx}{v\sqrt{X}}, \text{ if } k = 0.$$

Digitized by Google

 $199. \int \frac{dx}{\sqrt{x}} = \frac{1}{k} \left(\frac{b'}{\sqrt{x}} - \frac{1}{2}\beta \int \frac{dx}{\sqrt{x}} + b^{n} \int \frac{dx}{\sqrt{x}} \right).$ $200. \int \frac{v \, dx}{X \sqrt{X}} = -\frac{2 \left(2 \, k + \beta v\right)}{b' a \sqrt{X}}$ 201. $\int \frac{v \, dx}{\sqrt{x}} = \frac{b' \sqrt{X}}{c} - \frac{\beta}{2c} \int \frac{dx}{\sqrt{X}}$ **202.** $\int v \sqrt{X} \, dx = \frac{b' X \sqrt{X}}{3a} - \frac{\beta}{2a} \int \sqrt{X} \, dx.$ $203. \int \frac{v \, dx}{X^n \sqrt{X}} = -\frac{b^t \sqrt{X}}{(2n-1) c X^n} - \frac{\beta}{2c} \int \frac{dx}{X^n \sqrt{X}}$ $204. \int \frac{v X^n dx}{\sqrt{Y}} = \frac{b' X^n \sqrt{X}}{(2n+1)c} - \frac{\beta}{2c} \int \frac{X^n dx}{\sqrt{Y}}.$ **205.** $\int \frac{dx}{\sqrt{x}} = -\frac{b'\sqrt{X}}{(m-1)k\nu^{m-1}} - \frac{(2m-3)\beta}{2(m-1)k} \int \frac{dx}{\sqrt{x}}$ $-\frac{(m-2)c}{(m-1)k}\int \frac{dx}{\sqrt{m-2}\sqrt{x}}, \text{ if } k\neq 0.$ **206.** $\int \frac{dx}{v^m \sqrt{X}} = -\frac{2b'\sqrt{X}}{(2m-1)Bv^m}$ $-\frac{2(m-1)c}{(2m-1)\beta}\int \frac{dx}{\sqrt{m-1}\sqrt{N}}, \text{ if } k=0.$ **207.** $\int \frac{\sqrt{X} \, dx}{v^m} = -\frac{b' X \sqrt{X}}{(m-1) \, k v^{m-1}} - \frac{(2 \, m-5) \beta}{2 \, (m-1) \, k} \int \frac{\sqrt{X} \, dx}{v^{m-1}}$ $-\frac{(m-4)c}{(m-1)k}\int \frac{\sqrt{X}\,dx}{n^{m-2}}$ $=\frac{1}{(m-1)b^{\prime 2}}\left(-\frac{b^{\prime}\sqrt{X}}{v^{m-1}}+\frac{1}{2}\beta\int\frac{dx}{v^{m-1}\sqrt{X}}+c\int\frac{dx}{v^{m-2}\sqrt{X}}\right)$ $=\frac{1}{(m-2)b^{n}}\left(-\frac{b'\sqrt{X}}{v^{m-1}}-k\int\frac{dx}{v^{m}\sqrt{X}}-\frac{1}{2}\beta\int\frac{dx}{v^{m-1}\sqrt{X}}\right)$

208.
$$\int v^m \sqrt{X} \, dx = \frac{1}{(m+2)c} \left(b' v^{m-1} X \sqrt{X} - (m+\frac{1}{2}) \beta \int v^{m-1} \sqrt{X} \, dx - (m-1)k \int v^{m-2} \sqrt{X} \, dx \right)$$

$$209. \int \frac{dx}{v^m X^n \sqrt{X}} = -\frac{1}{(m-1)k} \left(\frac{b'\sqrt{X}}{v^{m-1}X^n} + (m+n-\frac{3}{2})\beta \int \frac{dx}{v^{m-1}X^n \sqrt{X}} + (m+2n-2)c \int \frac{dx}{v^{m-2}X^n \sqrt{X}} \right), \text{ if } k \neq 0.$$

210.
$$\int \frac{dx}{v^m X^n \sqrt{X}} = \frac{-2}{(2m+2n-1)\beta} \left(\frac{b' \sqrt{X}}{v^m X^n} + (m+2n-1)c \int \frac{dx}{v^{m-1} X^n \sqrt{X}} \right), \text{ if } k = 0.$$

$$\begin{aligned} \mathbf{211.} & \int \frac{X^n dx}{v^m \sqrt{X}} \\ &= -\frac{1}{(m-1)k} \left(\frac{b' X^n \sqrt{X}}{v^{m-1}} + (m-n-\frac{3}{2}) \beta \int \frac{X^n dx}{v^{m-1} \sqrt{X}} \\ &+ (m-2n-2) c \int \frac{X^n dx}{v^{m-2} \sqrt{X}} \right) \\ &= -\frac{1}{(m-2n)b'^2} \left(\frac{b' X^{n-1} \sqrt{X}}{v^{m-1}} + (2n-1)k \int \frac{X^{n-1} dx}{v^m \sqrt{X}} \\ &+ (n-\frac{1}{2}) \beta \int \frac{X^{n-1} dx}{v^{m-1} \sqrt{X}} \right) \\ &= \frac{1}{(m-1)b'^2} \left(-\frac{b' X^{n-1} \sqrt{X}}{v^{m-1}} + (n-\frac{1}{2}) \beta \int \frac{X^{n-1} dx}{v^{m-1} \sqrt{X}} \\ &+ (2n-1) c \int \frac{X^{n-1} dx}{v^{m-2} \sqrt{X}} \right). \end{aligned}$$

212.
$$\int \frac{v^m X^n dx}{\sqrt{X}} = \frac{1}{(m+2n)c} \left(b' v^{m-1} X^n \sqrt{X} - (m+n-\frac{1}{2}) \beta \int \frac{v^{m-1} X^n dx}{\sqrt{X}} - (m-1)k \int \frac{v^{m-2} X^n dx}{\sqrt{X}} \right)$$

213.
$$\int \frac{v^m dx}{X^n \sqrt{X}} = \frac{1}{(m-2n)c} \left(\frac{b' v^{m-1} \sqrt{X}}{X^n} - (m-n-\frac{1}{2}) \beta \int \frac{v^{m-1} dx}{X^n \sqrt{X}} - (m-1)k \int \frac{v^{m-2} dx}{X^n \sqrt{X}} \right).$$

IV. MISCELLANEOUS ALGEBRAIC EXPRESSIONS.

$$214. \int \sqrt{2 ax - x^2} \, dx = \frac{x - a}{2} \sqrt{2 ax - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x - a}{a}.$$

$$215. \int \frac{dx}{\sqrt{2 ax - x^2}} = \operatorname{versin}^{-1} \frac{x}{a} = \cos^{-1} \left(1 - \frac{x}{a}\right)$$

$$= 2 \sin^{-1} \sqrt{\frac{x}{2 a}}.$$

$$216. \int \frac{x^n dx}{\sqrt{2 ax - x^2}} = -\frac{x^{n-1} \sqrt{2 ax - x^2}}{n}$$

$$-\frac{a (1 - 2 n)}{n} \int \frac{x^{n-1} dx}{\sqrt{2 ax - x^2}}.$$

$$217. \int \frac{dx}{x^n \sqrt{2 ax - x^2}} = \frac{\sqrt{2 ax - x^2}}{a (1 - 2 n) x^n}$$

$$+ \frac{n - 1}{(2 n - 1) a} \int \frac{dx}{x^{n-1} \sqrt{2 ax - x^2}}.$$

$$218. \int x^n \sqrt{2 ax - x^2} \cdot dx = -\frac{x^{n-1} \sqrt{(2 ax - x^2)^3}}{n + 2}$$

$$+ \frac{(2 n + 1) a}{n + 2} \int x^{n-1} \sqrt{2 ax - x^2} \cdot dx.$$

$$219. \int \frac{\sqrt{2 ax - x^2} \cdot dx}{x^n} = \frac{\sqrt{(2 ax - x^2)^3}}{(3 - 2 n) ax^n}$$

$$+ \frac{n - 3}{(2 n - 3) a} \int \frac{\sqrt{2 ax - x^2} \cdot dx}{x^{n-1}}.$$

.

221.
$$\int \frac{dx}{x\sqrt{x^{n}+a^{2}}} = \frac{1}{an}\log\frac{\sqrt{a^{2}+x^{n}}-a}{\sqrt{a^{2}+x^{n}}+a}$$

222.
$$\int \frac{x^{\frac{1}{2}} dx}{\sqrt{a^{\frac{1}{2}} - x^{\frac{3}{2}}}} = \frac{2}{3} \sin^{-1} \left(\frac{x}{a}\right)^{\frac{1}{2}}.$$

223.
$$\int \frac{dx}{(a+bx^2)\sqrt{x}} = \frac{1}{b\delta^3\sqrt{2}} \left\{ \log\left(\frac{x+\delta^2+\sqrt{2}\delta^2 x}{\sqrt{a+bx^2}}\right) + \tan^{-1}\frac{\delta\sqrt{2}x}{\delta^2-x} \right\}, \text{ where } b\delta^4 = a.$$

224.
$$\int \frac{\sqrt{x} \cdot dx}{a + bx^2} = \frac{1}{b\delta\sqrt{2}} \left\{ \tan^{-1} \frac{\sqrt{2\delta^2 x}}{\delta^2 - x} - \log\left(\frac{x + \delta^2 + \sqrt{2\delta^2 x}}{\sqrt{a + bx^2}}\right) \right\}, \text{ where } b\delta^4 = a.$$

$$225. \int \frac{x^{4} \cdot dx}{a+bx^{4}} = \frac{2\sqrt{x}}{b} - \frac{a}{b} \int \frac{dx}{(a+bx^{4})\sqrt{x}}.$$

226.
$$\int \frac{dx}{(a+bx^2)^2 \sqrt{x}} = \frac{\sqrt{x}}{2 a (a+bx^2)} + \frac{3}{4 a} \int \frac{dx}{(a+bx^2) \sqrt{x}}.$$

$$227. \int \frac{\sqrt{x} \cdot dx}{(a+bx^2)^2} = \frac{x^{\frac{1}{2}}}{2 a (a+bx^2)} + \frac{1}{4 a} \int \frac{\sqrt{x} \cdot dx}{(a+bx^3)} \cdot \frac{1}{2 a (a+bx^2)} = \frac{x^{\frac{1}{2}}}{2 a (a+bx^2)} + \frac{1}{4 a} \int \frac{\sqrt{x} \cdot dx}{(a+bx^2)} \cdot \frac{1}{2 a (a+bx^2)} + \frac{1}{$$

If a_1, a_2, a_3 , etc., are the roots of the equation

$$p_0x^n + p_1x^{n-1} + p_2x^{n-2} + \cdots + p_n = 0,$$

the integrand in the expression

$$\int \frac{(q_0 x^m + q_1 x^{m-1} + \cdots + q_n) dx}{(p_0 x^n + p_1 x^{n-1} + \cdots + p_n) \sqrt{a + bx + cx^2}}$$

where m < n, may be expressed as the sum of a number of partial fractions of the form $\frac{A}{(x-a_k)^r \sqrt{a+bx+cx^2}}$, and these can be integrated by the aid of equations given above. Thus,

228.
$$\int \frac{(px+q) dx}{(x-a') (x-b') \sqrt{a+bx+cx^2}} = \frac{q+a'p}{a'-b'} \int \frac{dx}{(x-a') \sqrt{a+bx+cx^2}} - \frac{q+b'p}{a'-b'} \int \frac{dx}{(x-b') \sqrt{a+bx+cx^2}}$$

229.
$$\int \frac{dx}{(a'+c'x^2)\sqrt{a+cx^2}} = \frac{1}{\sqrt{a'(ac'-a'c)}} \tan^{-1}x\sqrt{\frac{(ac'-a'c)}{a'(a+cx^2)}} = \frac{1}{2\sqrt{a'(a'c-ac')}} \log \frac{\sqrt{a'(a+cx^2)} + \sqrt{a'c-ac'}}{\sqrt{a'(a+cx^2)} - \sqrt{a'c-ac'}}$$

230.
$$\int \frac{x \, dx}{(a'+c'x^2)\sqrt{a+cx^2}} = \frac{1}{\sqrt{c'(a'c-ac')}} \tan^{-1} \sqrt{\frac{c'(a+cx^2)}{a'c-ac'}} = \frac{1}{2\sqrt{c'(ac'-a'c)}} \log \frac{\sqrt{c'(a+cx^2)} - \sqrt{ac'-a'c}}{\sqrt{c'(a+cx^2)} + \sqrt{ac'-a'c}}$$

$$231. \int f\left\{x, \sqrt[n]{\frac{a+bx}{a'+b'x}}\right\} dx$$
$$= n(a'b-ab') \int f\left(\frac{a-a'z^n}{b'z^n-b}, z\right) \cdot \frac{z^{n-1}dz}{(b'z^n-b)^2},$$

where $z^n(a'+b'x) = a + bx$.

232.
$$\int f(x, \sqrt[n]{c + \sqrt[m]{a + bx}}) dx$$

= $\frac{mn}{b} \int f\left\{\frac{(z^n - c)^m - a}{b}, z\right\} (z^n - c)^{m-1} z^{n-1} dz,$

where $z^n = c + \sqrt[m]{a + bx}$.

34

$$233. \int f\left\{x, \left[\frac{a+bx}{a'+b'x}\right]^{\frac{m}{n}}, \left[\frac{a+bx}{a'+b'x}\right]^{\frac{p}{q}}, \cdots\right\} dx$$
$$= s\left(a'b-ab'\right) \int f\left\{\frac{a'y^s-a}{b-b'y^s}, y^{\frac{ms}{n}}, y^{\frac{ps}{q}}, \cdots\right\} \frac{y^{s-1}dy}{(b-b'y^s)^2},$$

where $y^{s}(a' + b'x) = a + bx$ and s is the least common multiple of n, q, etc.

234.
$$\int f(x, \sqrt{a+bx+x^2}) dx$$

= $2 \int f\left(\frac{2\sqrt{a} \cdot z - b}{1-z^2}, \frac{z^2\sqrt{a} - bz + \sqrt{a}}{1-z^2}\right) \cdot \frac{(z^2\sqrt{a} - bz + \sqrt{a}) dz}{(1-z^2)^2},$
where $xz + \sqrt{a} = \sqrt{a+bx+x^2}.$

235.
$$\int f(x, \sqrt{a+bx+x^2}) dx = \int f\left(\frac{u^2-a}{b-2u}, \frac{u^2-bu+a}{2u-b}\right) \frac{2(bu-a-u^2) du}{(b-2u)^2},$$

where $u = \sqrt{a + bx + x^2} - x$.

V. TRANSCENDENTAL FUNCTIONS.

236.
$$\int \sin x \cdot f(\cos x) \, dx = -\int f(\cos x) \, d\cos x.$$

237.
$$\int \cos x \cdot f(\sin x) \, dx = \int f(\sin x) \, d\sin x.$$

238.
$$\int \sin x \cdot f(\sin x, \cos x) \, dx = -\int f(\sqrt{1-z^2}, z) \, dz,$$
where $z = \cos x.$
239.
$$\int \cos x \cdot f(\sin x, \cos x) \, dx = \int f(z, \sqrt{1-z^2}) \, dz,$$
where $z = \sin x.$
240.
$$\int f(\sin x, \cos x) \, dx = \int f(z, \sqrt{1-z^2}) \, \frac{dz}{\sqrt{1-z^2}}; z = \sin x.$$

241.
$$\int f(\sin x) \, dx = -\int f\left(\cos\left(\frac{\pi}{2} - x\right)\right) d\left(\frac{\pi}{2} - x\right).$$

242.
$$\int f(\tan x) \, dx = -\int f \exp\left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right).$$

243.
$$\int f(\sec x) \, dx = -\int f \exp\left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right).$$

244.
$$\int \frac{\sin x \cdot f(\sin^2 x) \, dx}{\sqrt{1-k^2}\sin^2 x} = \int \frac{f(z) \, dz}{2\sqrt{(1-z)}(1-k^2z)},$$
where $z = \sin^2 x.$

245.
$$\int \frac{\cos x \cdot f(\cos^2 x) dx}{\sqrt{1 - k^2 \sin^2 x}} = \int \frac{f(1-z) dz}{2\sqrt{z(1-k^2 z)}}, \text{ where } z = \sin^2 x.$$

.

35

246.
$$\int \frac{\tan x \cdot f(\tan^2 x) dx}{\sqrt{1 - k^2 \sin^2 x}} = \int f\left(\frac{z}{1 - z}\right) \frac{dz}{2(1 - z)\sqrt{1 - k^2 z}},$$
where $z = \sin^2 x$.
247.
$$\int f(\tan x) dx = \int \frac{f(z) dz}{1 + z^2}, \text{ where } z = \tan x.$$
248.
$$\int \sec^{n+2} x \cdot f(\tan x) dx = \int (1 + z^2)^{\frac{n}{2}} f(z) dz; z = \tan x.$$
249.
$$\int f(\sin x, \cos x) dx$$

$$= -\int f\left(\cos\left(\frac{\pi}{2} - x\right), \sin\left(\frac{\pi}{2} - x\right)\right) d\left(\frac{\pi}{2} - x\right).$$
250.
$$\int f(z) \cdot \sin^{-1} x \cdot dx = \sin^{-1} x \cdot \phi(z) - \int \frac{\phi(z) dx}{\sqrt{1 - x^2}}, dz,$$
where $\phi(x) = \int f(x) dx.$
251.
$$\int f(x) \cdot \cos^{-1} x dx = \cos^{-1} x \cdot \phi(x) + \int \frac{\phi(x) dx}{\sqrt{1 - x^2}}.$$
252.
$$\int f(x) \cdot \tan^{-1} x dx = \tan^{-1} x \cdot \phi(x) - \int \frac{\phi(x) dx}{1 + x^2}.$$
253.
$$\int f(z) \cdot \cot^{-1} x dx = \cot^{-1} x \cdot \phi(z) + \int \frac{\phi(z) dx}{1 + x^2}.$$
254.
$$\int f(x, \cos x) dx = -\int f\left(\frac{\pi}{2} - z, \sin z\right) dz,$$
where $z = \frac{\pi}{2} - x.$
255.
$$\int \frac{\sin x \cdot f(\cos x) dx}{a + b \cos x} = -\frac{1}{b} \int f\left(\frac{z - a}{b}\right) \frac{dz}{z},$$
where $z = a + b \cos x.$

'

.

256.
$$\int f(x, \log x) dx = \int f(e^{z}, z) e^{z} dz, \text{ where } z = \log x.$$

257.
$$\int \frac{f(\log x) dx}{x} = \int f(z) dz, \text{ where } z = \log x.$$

258.
$$\int x^{m} f(\log x) dx = \int e^{(m+1)z} f(z) dz.$$

259.
$$\int f(\sin x, \cos x, \tan x, \operatorname{ctr} x, \sec x, \csc x) dx$$

$$= 2 \int f\left(\frac{2z}{1+z^{2}}, \frac{1-z^{2}}{1+z^{2}}, \frac{2z}{1-z^{2}}, \frac{1-z^{2}}{2z}, \frac{1+z^{4}}{1-z^{3}}, \frac{1+z^{4}}{2z}\right)$$

$$\frac{dz}{1+z^{2}}, \text{ where } z = \tan \frac{x}{2};$$

$$= \int f\left(z, \sqrt{1-z^{2}}, \frac{z}{\sqrt{1-z^{2}}}, \frac{\sqrt{1-z^{3}}}{z}, \frac{1}{\sqrt{1-z^{2}}}, \frac{1}{z}\right)$$

$$\frac{dz}{\sqrt{1-z^{2}}}, \text{ where } z = \sin x;$$

$$= \int f\left(\frac{z}{\sqrt{1+z^{2}}}, \frac{1}{\sqrt{1+z^{2}}}, z, \frac{1}{z}, \sqrt{1+z^{2}}, \frac{\sqrt{1+z^{2}}}{z}\right)$$

$$\frac{dz}{1+z^{2}}, \text{ where } z = \tan x;$$

$$= \int f\left(\sqrt{z}, \sqrt{1-z}, \sqrt{\frac{z}{1-z}}, \sqrt{\frac{1-z}{z}}, \frac{1}{\sqrt{1-z}}, \frac{1}{\sqrt{z}}, \frac{1}{\sqrt{z}}\right)$$

$$\frac{dz}{2\sqrt{z(1-z)}}, \text{ where } z = \sin^{2}x;$$

$$= \int f\left(\sqrt{\frac{z}{1+z}}, \frac{1}{\sqrt{1+z}}, \sqrt{z}, \frac{1}{\sqrt{z}}, \sqrt{1+z}, \sqrt{\frac{1+z}{z}}\right)$$

$$\frac{dz}{2\sqrt{z(1+z)}}, \text{ where } z = \tan^{3}x.$$

Digitized by Google

١

260.
$$\int \sin x \, dx = -\cos x$$
.
261. $\int \sin^2 x \, dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2}x = \frac{1}{2}x - \frac{1}{4} \sin 2x$.
262. $\int \sin^3 x \, dx = -\frac{1}{3} \cos x (\sin^2 x + 2)$.
263. $\int \sin^n x \, dx = -\frac{\sin^{n-1}x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2}x \, dx$.
264. $\int \cos x \, dx = \sin x$.
265. $\int \cos^2 x \, dx = \frac{1}{2} \sin x \cos x + \frac{1}{2}x = \frac{1}{2}x + \frac{1}{4} \sin 2x$.
266. $\int \cos^3 x \, dx = \frac{1}{3} \sin x (\cos^2 x + 2)$.
267. $\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1}x \sin x + \frac{n-1}{n} \int \cos^{n-2}x \, dx$.
268. $\int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x$.
269. $\int \sin^2 x \cos^2 x \, dx = -\frac{1}{8} (\frac{1}{4} \sin 4x - x)$.
270. $\int \sin x \cos^m x \, dx = -\frac{\cos^{m+1}x}{m+1}$.
271. $\int \sin^m x \cos x \, dx = \frac{\sin^{m+1}x}{m+1}$.
272. $\int \cos^m x \sin^n x \, dx = \frac{\cos^{m-1}x \sin^{n+1}x}{m+n} + \frac{m-1}{m+n} \int \cos^{m-2}x \sin^n x \, dx$.
273. $\int \cos^m x \sin^n x \, dx = -\frac{\sin^{n-1}x \cos^{m+1}x}{m+n} + \frac{n-1}{m+n} \int \cos^m x \sin^{n-2}x \, dx$.

TRANSCENDENTAL FUNCTIONS.

$$\begin{aligned} \mathbf{274.} \quad \int \frac{\sin^n x \, dx}{\cos^m x} &= \frac{1}{n-m} \left(-\frac{\sin^{n-1} x}{\cos^{m-1} x} + (n-1) \int \frac{\sin^{n-2} x \, dx}{\cos^m x} \right) \\ &= \frac{1}{m-1} \left(\frac{\sin^{n+1} x}{\cos^{m-1} x} - (n-m+2) \int \frac{\sin^n x \, dx}{\cos^{m-2} x} \right) \\ &= \frac{1}{m-1} \left(\frac{\sin^{n-1} x}{\cos^{m-1} x} - (n-1) \int \frac{\sin^{n-2} x \, dx}{\cos^{m-2} x} \right). \end{aligned}$$

$$275. \int \frac{\cos^m x \, dx}{\sin^n x} = -\frac{\cos^{m+1} x}{(n-1)\sin^{n-1} x} - \frac{m-n+2}{n-1} \int \frac{\cos^m x \, dx}{\sin^{n-2} x}$$
$$= \frac{\cos^{m-1} x}{(m-n)\sin^{n-1} x} + \frac{m-1}{m-n} \int \frac{\cos^{m-2} x \, dx}{\sin^n x}$$
$$= -\frac{1}{n-1} \frac{\cos^{m-1} x}{\sin^{n-1} x} - \frac{m-1}{n-1} \int \frac{\cos^{m-2} x \, dx}{\sin^{n-2} x}.$$

$$\mathbf{276.} \int \frac{\sin^m x \, dx}{\cos^n x} = -\int \frac{\cos^m \left(\frac{\pi}{2} - x\right) d\left(\frac{\pi}{2} - x\right)}{\sin^n \left(\frac{\pi}{2} - x\right)}.$$

$$277. \int \frac{dx}{\sin x \cos x} = \log \tan x.$$

278.
$$\int \frac{dx}{\cos x \sin^2 x} = \log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) - \csc x.$$

$$279. \int \frac{dx}{\sin^m x \cos^n x}$$

$$= \frac{1}{n-1} \cdot \frac{1}{\sin^{m-1} x \cdot \cos^{n-1} x} + \frac{m+n-2}{n-1} \int \frac{dx}{\sin^m x \cdot \cos^{n-2} x}$$

$$= -\frac{1}{m-1} \cdot \frac{1}{\sin^{m-1} x \cdot \cos^{n-1} x} + \frac{m+n-2}{m-1} \int \frac{dx}{\sin^{m-2} x \cdot \cos^n x}$$

$$280 \int \frac{dx}{1-x} = -\frac{1}{m-1} - \frac{\cos x}{1-x} + \frac{m-2}{m-1} \int \frac{dx}{1-x}$$

280.
$$\int \frac{dx}{\sin^m x} = -\frac{1}{m-1} \cdot \frac{\cos x}{\sin^{m-1} x} + \frac{m-2}{m-1} \int \frac{dx}{\sin^{m-2} x} \cdot \frac{dx}{\sin^{m-2} x}$$

39

281. $\int \frac{dx}{\cos^n x} = \frac{1}{n-1} \cdot \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}$ $282. \int \tan x \, dx = -\log \cos x.$ $283. \int \tan^2 x \, dx = \tan x - x.$ **284.** $\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx.$ $285. \int \operatorname{ctn} x \, dx = \log \sin x.$ $286. \int \operatorname{ctn}^2 x \, dx = -\operatorname{ctn} x - x.$ **287.** $\int \operatorname{ctn}^{n} x \, dx = -\frac{\operatorname{ctn}^{n-1} x}{n-1} - \int \operatorname{ctn}^{n-2} x \, dx.$ **288.** $\int \sec x \, dx = \log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) = \frac{1}{2} \log \frac{1 + \sin x}{1 - \sin x}$ $289. \int \sec^2 x \, dx = \tan x.$ **290.** $\int \sec^n x \, dx = \int \frac{dx}{\cos^n x} = \frac{\sin x}{(n-1)\cos^{n-1}x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2}x}$ $=\frac{\sin x}{(n-1)\cos^{n-1}x}+\frac{n-2}{n-1}\int\sec^{n-2}x\,dx.$ $291. \int \csc x \, dx = \log \, \tan \frac{1}{2} x.$ $292. \int \csc^2 x \, dx = -\operatorname{ctn} x.$

40

$$\begin{aligned} & 293. \int \csc^{n} x \, dx = \int \frac{dx}{\sin^{n} x} \\ & = -\frac{\cos x}{(n-1)\sin^{n-1}x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2}x} \\ & = -\frac{\cos x}{(n-1)\sin^{n-1}x} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx. \end{aligned} \\ & 294. \int \frac{dx}{1+\sin x} = -\tan \left(\frac{1}{4}\pi - \frac{1}{2}x\right). \end{aligned} \\ & 295. \int \frac{dx}{1-\sin x} = \cot \left(\frac{1}{4}\pi - \frac{1}{2}x\right) = \tan \left(\frac{1}{4}\pi + \frac{1}{2}x\right). \end{aligned} \\ & 296. \int \frac{dx}{1+\cos x} = \tan \frac{1}{2}x, \text{ or } \csc x - \cot x. \end{aligned} \\ & 297. \int \frac{dx}{1-\cos x} = -\cot \frac{1}{2}x, \text{ or } -\cot x - \csc x. \end{aligned} \\ & 298. \int \frac{dx}{a\pm b\sin x} = \frac{2\sec \theta}{a} \cdot \tan^{-1}(\sec \theta \cdot \tan \frac{1}{2}x \pm \tan \theta), \end{aligned} \\ & \text{if } a > b, \text{ and } b = a \sin \theta. \end{aligned} \\ & 299. \int \frac{dx}{a\pm b\sin x} = \frac{\pm \sec a}{b} \log \frac{\sin \frac{1}{2}(a\pm x)}{\cos \frac{1}{2}(x \mp a)}, \end{aligned} \\ & \text{if } b > a, \text{ and } a = b \sin a. \end{aligned} \\ & 300. \int \frac{dx}{a+b\cos x} = \frac{-1}{\sqrt{a^2-b^2}} \cdot \sin^{-1} \left[\frac{b+a\cos x}{a+b\cos x}\right], \end{aligned} \\ & \text{ or } \frac{1}{\sqrt{a^2-b^2}} \tan^{-1} \left[\sqrt{\frac{a-b}{a+b}} \tan \frac{1}{2}x\right], \end{aligned} \\ & \text{ or } \frac{1}{\sqrt{a^2-b^2}} \tan^{-1} \left[\frac{\sqrt{a^2-b^2}\cdot\sin x}{b+a\cos x}\right], \end{aligned}$$

or
$$\frac{1}{\sqrt{b^2 - a^2}} \log \left[\frac{b + a \cos x + \sqrt{b^2 - a^2} \cdot \sin x}{a + b \cos x} \right],$$

or
$$\frac{1}{\sqrt{b^2 - a^2}} \log \left[\frac{\sqrt{b + a} + \sqrt{b - a} \cdot \tan \frac{1}{2} x}{\sqrt{b + a} - \sqrt{b - a} \cdot \tan \frac{1}{2} x} \right],$$

or
$$\frac{1}{\sqrt{b^2 - a^2}} \tanh^{-1} \left[\frac{\sqrt{b^2 - a^2} \cdot \sin x}{b + a \cos x} \right].$$

301.
$$\int \frac{dx}{a+b\,\tan x} = \frac{1}{a^2+b^2} [b\,\log{(a\,\cos x+b\,\sin x)+ax}].$$

302.
$$\int \frac{dx}{\sin x + \cos x} = \frac{1}{\sqrt{2}} \log \tan \left(\frac{1}{2} x + \frac{1}{8} \pi \right).$$

303.
$$\int \frac{\sin x \, dx}{a + b \cos x} = -\int \frac{\cos\left(\frac{1}{2}\pi - x\right) d\left(\frac{1}{2}\pi - x\right)}{a + b \sin\left(\frac{1}{2}\pi - x\right)} = -\frac{1}{b} \log\left(a + b \cos x\right).$$

304.
$$\int \frac{(a'+b'\cos x)\,dx}{a+b\,\cos x} = \frac{b'x}{b} + \frac{a'b-ab'}{b} \int \frac{dx}{a+b\,\cos x}$$

305.
$$\int \frac{(a'+b'\cos x)\,dx}{(a+b\,\cos x)^2} = \frac{ab'-a'b}{a^2-b^2}\,\frac{\sin x}{a+b\,\cos x} + \frac{aa'-bb'}{a^2-b^2}\int \frac{dx}{a+b\,\cos x}$$

306.
$$\int \frac{(a'+b'\cos x)\,dx}{(a+b\,\cos x)^n} = \frac{1}{(n-1)\,(a^2-b^2)} \left[\frac{(ab'-a'b)\sin x}{(a+b\,\cos x)^{n-1}} + \int \frac{\left[(aa'-bb')\,(n-1)+(n-2)\,(ab'-a'b)\cos x\right]\,dx}{(a+b\,\cos x)^{n-1}} \right]$$

307.
$$\int \frac{(a'+b'\cos x)\,dx}{(1+\cos x)^n} = \frac{(a'-b')\tan\frac{1}{2}x}{(2\,n-1)\,(1+\cos x)^{n-1}} + \frac{n\,(a'+b')-a'}{2\,n-1} \int \frac{dx}{(1+\cos x)^{n-1}}$$

308.
$$\int \frac{dx}{(a+b\cos x)^n} = \frac{1}{(n-1)(a^2-b^2)} \left[\frac{-b\sin x}{(a+b\cos x)^{n-1}} + (2n-3)a \int \frac{dx}{(a+b\cos x)^{n-1}} - (n-2) \int \frac{dx}{(a+b\cos x)^{n-2}} \right].$$

309.
$$\int \frac{dx}{(1+\cos x)^n} = \frac{\tan \frac{1}{2}x}{(2n-1)(1+\cos x)^{n-1}} + \frac{n-1}{2n-1} \int \frac{dx}{(1+\cos x)^{n-1}}.$$

310.
$$\int \frac{(a'+b'\cos x)\,dx}{\sin x\,(a+b\cos x)} = \frac{a'b-ab'}{a^2-b^2}\log\left(a+b\cos x\right) \\ + \frac{a'+b'}{a+b}\log\sin\frac{1}{2}x - \frac{a'-b'}{a-b}\log\cos\frac{1}{2}x.$$

311.
$$\int \frac{(a'+b'\cos x)\,dx}{\cos x\,(a+b\cos x)} = \frac{a'}{a}\log\tan\frac{1}{2}\left(\frac{1}{2}\,\pi+x\right) + \frac{(ab'-a'b)}{a}\int \frac{dx}{a+b\cos x}$$

312.
$$\int \frac{(a'+b'\cos x)\,dx}{\sin x\,(1\pm\cos x)} = \pm \frac{\frac{1}{2}\,(a'\pm b')}{1\pm\cos x} + \frac{1}{2}\,(a'\pm b')\log\tan\frac{1}{2}\,x.$$

313.
$$\int \frac{dx}{(1-\cos x)^n} = \frac{-\cot \frac{1}{2}x}{(2n-1)(1-\cos x)^{n-1}} + \frac{n-1}{2n-1} \int \frac{dx}{(1-\cos x)^{n-1}}.$$

Digitized by Google

.

$$\begin{aligned} \mathbf{314.} \quad \int \frac{dx}{a^2 - b^2 \cos^2 x} &= \int \frac{dx}{(a^2 - b^2) + b^2 \sin^2 x} \\ &= \frac{1}{2 a b \sin a} \log \frac{\sin (a - x)}{\sin (a + x)}, \\ \text{or } \frac{1}{a^2 \sin \beta} \tan^{-1} \left(\frac{\tan x}{\sin \beta}\right), \text{ where } \cos a = \frac{1}{\cos \beta} = \frac{a}{b}. \\ \mathbf{315.} \quad \int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} &= \frac{1}{a b} \tan^{-1} \left(\frac{b \tan x}{a}\right). \\ \mathbf{316.} \quad \int \frac{\sin^2 x \, dx}{a + b \cos^2 x} &= \frac{\sqrt{a + b}}{b \sqrt{a}} \tan^{-1} \left(\tan x \cdot \sqrt{\frac{a}{a + b}}\right) - \frac{x}{b}. \\ \mathbf{317.} \quad \int \frac{\sin x \cos x \, dx}{a \cos^2 x + b \sin^2 x} &= \frac{1}{2 (b - a)} \log (a \cos^2 x + b \sin^2 x). \\ \mathbf{318.} \quad \int \frac{dx}{(a + b \cos x + c \sin x)^n} &= \int \frac{d (x - a)}{[a + r \cos (x - a)]^n}, \\ \text{where } b = x \cos a \text{ and } c = x \sin a. \end{aligned}$$

$$319. \int \frac{dx}{a+b\cos x + c\sin x}$$

$$= \frac{-1}{\sqrt{a^2 - b^2 - c^2}} \cdot \sin^{-1} \left[\frac{b^2 + c^2 + a \left(b\cos x + c\sin x\right)}{\sqrt{b^2 + c^2} \left(a + b\cos x + c\sin x\right)} \right]$$

$$= \frac{1}{\sqrt{b^2 + c^2 - a^2}} \cdot \log \left[\frac{b^2 + c^2 + a \left(b\cos x + c\sin x\right) + \sqrt{b^2 + c^2 - a^2} \left(b\sin x - c\cos x\right)}{\sqrt{b^2 + c^2} \left(a + b\cos x + c\sin x\right)} \right]$$

$$= \frac{1}{\sqrt{b^2 + c^2 - a^2}} \cdot \log \frac{\sqrt{b^2 + c^2 - a^2} - c + (b-a)\tan \frac{1}{2}x}{\sqrt{b^2 + c^2 - a^2} + c - (b-a)\tan \frac{1}{2}x}$$

$$= \frac{2}{\sqrt{a^2 - b^2 - c^2}} \tan^{-1} \left[\frac{(a-b)\tan \frac{1}{2}x + c}{\sqrt{a^2 - b^2 - c^2}} \right].$$

$$\begin{aligned} &\textbf{320.} \quad \int \frac{dx}{a(1+\cos x)+c\sin x} = \frac{1}{c} \log \left(a+c\tan \frac{1}{2}x\right). \\ &\textbf{321.} \quad \int \frac{dx}{(a[1+\cos x]+c\sin x)^2} \\ &= \frac{1}{c^3} \left[\frac{c(a\sin x-c\cos x)}{a(1+\cos x)+c\sin x} - a\log \left(a+c\tan \frac{1}{2}x\right) \right]. \\ &\textbf{322.} \quad \int \frac{(x+\sin x) dx}{1+\cos x} = x \tan \frac{1}{2}x. \\ &\textbf{323.} \quad \int \cos x \sqrt{1-k^2 \sin^2 x} dx \\ &= \frac{1}{2} \sin x \sqrt{1-k^2 \sin^2 x} + \frac{1}{2k} \sin^{-1}(k\sin x). \\ &\textbf{324.} \quad \int \sin x \sqrt{1-k^2 \sin^2 x} - \frac{1-k^2}{2k} \log \left(k\cos x + \sqrt{1-k^2 \sin^2 x}\right). \\ &\textbf{325.} \quad \int \sin x \left(1-k^2 \sin^2 x\right)^{\frac{3}{2}} dx = -\frac{1}{4} \cos x \left(1-k^2 \sin^2 x\right)^{\frac{3}{2}} \\ &+ \frac{3}{4} \left(1-k^3\right) \int \sin x \sqrt{1-k^2 \sin^2 x} dx. \\ &\textbf{326.} \quad \int \frac{\cos x dx}{\sqrt{1-k^2 \sin^2 x}} = \frac{1}{k} \sin^{-1}(k\sin x), \\ & \text{or } \frac{1}{b} \log \left(b\sin x + \sqrt{1+b^2 \sin^2 x}\right), \text{ where } b^2 = -k^2. \\ &\textbf{327.} \quad \int \frac{\sin x dx}{\sqrt{1-k^2 \sin^2 x}} = -\frac{1}{k} \log \left(k\cos x + \sqrt{1-k^2 \sin^2 x}\right), \\ & \text{or } -\frac{1}{b} \sin^{-1} \frac{b\cos x}{\sqrt{1+b^2}}, \text{ where } b^2 = -k^2. \\ &\textbf{328.} \quad \int \frac{\tan x dx}{\sqrt{1-k^2 \sin^2 x}} \\ &= \frac{1}{2\sqrt{1-k^2}} \log \left(\frac{\sqrt{1-k^2 \sin^2 x} + \sqrt{1-k^2}}{\sqrt{1-k^2 \sin^2 x} - \sqrt{1-k^2}}\right). \end{aligned}$$

ł

329. $\int \frac{x \, dx}{1 + \sin x} = -x \tan \frac{1}{2} \left(\frac{1}{2} \pi - x \right) + 2 \log \cos \frac{1}{2} \left(\frac{1}{2} \pi - x \right).$ **330.** $\int \frac{x \, dx}{1 - \sin x} = x \, \operatorname{ctn} \frac{1}{2} \left(\frac{1}{2} \, \pi - x \right) + 2 \, \log \sin \frac{1}{2} \left(\frac{1}{2} \, \pi - x \right).$ **331.** $\int \frac{x \, dx}{1 + \cos x} = x \tan \frac{1}{2} x + 2 \log \cos \frac{1}{2} x.$ **332.** $\int \frac{x \, dx}{1 - \cos x} = -x \, \operatorname{ctn} \frac{1}{2} x + 2 \log \sin \frac{1}{2} x.$ **333.** $\int \frac{\tan x \, dx}{\sqrt{a+b \tan^2 x}} = \frac{1}{\sqrt{b-a}} \cos^{-1} \left(\frac{\sqrt{b-a}}{\sqrt{b-a}} \cdot \cos x \right) \cdot$ **334.** $\int \frac{dx}{a+b\tan^2 x} = \frac{1}{a-b} \left[x - \sqrt{\frac{b}{a}} \cdot \tan^{-1} \left(\sqrt{\frac{b}{a}} \cdot \tan x \right) \right].$ **335.** $\int \frac{\tan x \, dx}{a+b \tan x}$ $= \frac{1}{a^2 + b^2} \left\{ bx - a \log(a + b \tan x) + a \log \sec x \right\}.$ $\textbf{336.} \quad \int x \sin x \, dx = \sin x - x \cos x.$ **337.** $\int x^2 \sin x \, dx = 2 x \sin x - (x^2 - 2) \cos x.$ **338.** $\int x^3 \sin x \, dx = (3 \, x^2 - 6) \sin x - (x^3 - 6 \, x) \cos x.$ **339.** $\int x^m \sin x \, dx = -x^m \cos x + m \int x^{m-1} \cos x \, dx.$ $\textbf{340.} \int x \cos x \, dx = \cos x + x \sin x.$ **341.** $\int x^2 \cos x \, dx = 2 x \cos x + (x^2 - 2) \sin x.$ **342.** $\int x^3 \cos x \, dx = (3 \, x^2 - 6) \cos x + (x^3 - 6 \, x) \sin x.$

`46

$$\begin{aligned} \mathbf{343.} &\int x^m \cos x \, dx = x^m \sin x - m \int x^{m-1} \sin x \, dx. \\ \mathbf{344.} &\int \frac{\sin x}{x^m} \, dx = -\frac{1}{m-1} \cdot \frac{\sin x}{x^{m-1}} + \frac{1}{m-1} \int \frac{\cos x}{x^{m-1}} \, dx. \\ \mathbf{345.} &\int \frac{\cos x}{x^m} \, dx = -\frac{1}{m-1} \cdot \frac{\cos x}{x^{m-1}} - \frac{1}{m-1} \int \frac{\sin x}{x^{m-1}} \, dx. \\ \mathbf{346.} &\int \frac{\sin x}{x} \, dx = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!} + \frac{x^9}{9 \cdot 9!} \cdots . \\ \mathbf{347.} &\int \frac{\cos x}{x} \, dx = \log x - \frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \frac{x^8}{8 \cdot 8!} \cdots . \\ \mathbf{348.} &\int \frac{x \, dx}{\sin x} = x + \frac{x^8}{3 \cdot 3!} + \frac{7 \, x^5}{3 \cdot 5 \cdot 5!} + \frac{29 \, x^7}{3 \cdot 7 \cdot 7!} + \frac{127 \, x^9}{3 \cdot 9 \cdot 9!} + \cdots . \\ \mathbf{349.} &\int \frac{x \, dx}{\cos x} = \frac{x^2}{2} + \frac{x^4}{4 \cdot 2!} + \frac{5 \, x^6}{6 \cdot 4!} + \frac{61 \, x^8}{8 \cdot 6!} + \frac{1385 \, x^{10}}{10 \cdot 8!} + \cdots . \\ \mathbf{350.} &\int \frac{x \, dx}{\sin^2 x} = -x \, \operatorname{ctn} x + \log \sin x. \\ \mathbf{351.} &\int \frac{x \, dx}{\cos^2 x} = x \, \tan x + \log \cos x. \\ \mathbf{352.} & n^2 \int x^m \sin^n x \, dx \\ &= x^{m-1} \sin^{n-1} x \, (m \sin x - nx \cos x) \\ &+ n (n-1) \int x^m \sin^{n-2} x \, dx - m (m-1) \int x^{m-2} \sin^n x \, dx. \\ \mathbf{353.} & n^2 \int x^m \cos^n x \, dx \\ &= x^{m-1} \cos^{n-1} x (m \cos x + nx \sin x) \\ &+ n (n-1) \int x^m \cos^{n-2} x \, dx - m (m-1) \int x^{m-2} \cos^n x \, dx. \end{aligned}$$

354.
$$\int \frac{x^m dx}{\sin^n x}$$
$$= \frac{1}{(n-1)(n-2)} \left[-\frac{x^{m-1}(m\sin x + (n-2)x\cos x)}{\sin^{n-1}x} + (n-2)^2 \int \frac{x^m dx}{\sin^{n-2}x} + m(m-1) \int \frac{x^{m-2} dx}{\sin^{n-2}x} \right].$$

$$355. \int \frac{x^m dx}{\cos^n x} = \frac{1}{(n-1)(n-2)} \left[-\frac{x^{m-1}(m\cos x - (n-2)x\sin x)}{\cos^{n-1}x} + (n-2)^2 \int \frac{x^m dx}{\cos^{n-2}x} + m(m-1) \int \frac{x^{m-2} dx}{\cos^{n-2}x} \right].$$

356.
$$\int \frac{\sin^{n} x \, dx}{x^{m}} = \frac{1}{(m-1)(m-2)} \left[-\frac{\sin^{n-1} x \left((m-2)\sin x + nx\cos x\right)}{x^{m-1}} - n^{2} \int \frac{\sin^{n} x \, dx}{x^{m-2}} + n(n-1) \int \frac{\sin^{n-2} x \, dx}{x^{m-2}} \right].$$

$$357. \int \frac{\cos^n x \, dx}{x^m} = \frac{1}{(m-1)(m-2)} \left[\frac{\cos^{n-1} x \left(nx \cos x - (m-2) \cos x \right)}{x^{m-1}} - n^2 \int \frac{\cos^n x \, dx}{x^{m-2}} + n \left(n-1 \right) \int \frac{\cos^{n-2} x \, dx}{x^{m-2}} \right].$$

 $358. \int x^p \sin^m x \, \cos^n x \, dx$

$$= \frac{1}{(m+n)^2} \bigg[x^{p-1} \sin^m x \cos^{n-1} x \left(p \cos x + (m+n) x \sin x \right) \\ + (n-1) (m+n) \int x^p \sin^m x \cos^{n-2} x \, dx$$

$$-mp \int x^{p-1} \sin^{m-1}x \cos^{n-1}x dx$$

$$-p(p-1) \int x^{p-2} \sin^{m}x \cos^{n}x dx]$$

$$= \frac{1}{(m+n)^{2}} \left[x^{p-1} \sin^{m-1}x \cos^{n}x(p \sin x - (m+n)x \cos x) + (m-1)(m+n) \int x^{p} \sin^{m-2}x \cos^{n}x dx + np \int x^{p-1} \sin^{m-1}x \cos^{n-1}x dx - p(p-1) \int x^{p-2} \sin^{m}x \cos^{n}x dx \right]$$

359. $\int \sin mx \sin nx dx = \frac{\sin (m-n)x}{2(m-n)} - \frac{\sin (m+n)x}{2(m+n)}$
360. $\int \sin mx \cos nx dx = -\frac{\cos (m-n)x}{2(m-n)} - \frac{\cos (m+n)x}{2(m+n)}$
361. $\int \cos mx \cos nx dx = \frac{\sin (m-n)x}{2(m-n)} + \frac{\sin (m+n)x}{2(m+n)}$
362. $\int \sin^{2}mx dx = \frac{1}{2m} (mx - \sin mx \cos mx)$.
363. $\int \cos^{2}mx dx = \frac{1}{2m} (mx + \sin mx \cos mx)$.
364. $\int \sin mx \cos mx dx = -\frac{1}{4m} \cos 2mx$.
365. $\int \sin nx \sin^{m}x dx = \frac{1}{m+n} \left[-\cos nx \sin^{m}x + m \int \cos (n-1)x \cdot \sin^{m-1}x dx \right]$

366.
$$\int \sin nx \cos^m x \, dx = \frac{1}{m+n} \left[-\cos nx \cos^m x + m \int \sin (n-1) x \cdot \cos^{m-1} x \, dx \right].$$

367.
$$\int \cos nx \sin^m x \, dx = \frac{1}{m+n} \left[\sin nx \sin^m x - m \int \sin (n-1) x \cdot \sin^{m-1} x \, dx \right].$$

368.
$$\int \cos nx \cos^m x \, dx = \frac{1}{m+n} \left[\sin nx \cos^m x + m \int \cos (n-1)x \cdot \cos^{m-1}x \, dx \right].$$

$$369. \int \frac{\cos nx \, dx}{\cos^m x} = 2 \int \frac{\cos \left(n-1\right) x \, dx}{\cos^{m-1} x} - \int \frac{\cos \left(n-2\right) x \, dx}{\cos^m x} \cdot$$

370.
$$\int \frac{\cos nx \, dx}{\sin^m x} = -2 \int \frac{\sin (n-1)x \, dx}{\sin^{m-1}x} + \int \frac{\cos (n-2)x \, dx}{\sin^m x} dx$$

$$371. \int \frac{\sin nx \, dx}{\sin^m x} = 2 \int \frac{\cos \left(n-1\right) x \, dx}{\sin^{m-1} x} + \int \frac{\sin \left(n-2\right) x \, dx}{\sin^m x} \cdot$$

372.
$$\int \frac{\sin nx \, dx}{\cos^m x} = 2 \int \frac{\sin (n-1)x \, dx}{\cos^{m-1}x} - \int \frac{\sin (n-2)x \, dx}{\cos^m x} dx$$

373.
$$\int \frac{(\cos px + i \sin px) dx}{\cos nx} = -2 i \int \frac{z^{p+n-1} dz}{1+z^{2n}},$$

where $z = \cos x + i \sin x$. This yields two real integrals.

374.
$$\int \frac{(\cos px + i \sin px) dx}{\sin nx} = -2 \int \frac{z^{p+n-1} dz}{1-z^{2n}},$$

where $z = \cos x + i \sin x$. This yields two real integrals.

Digitized by Google

50

375.
$$\int \frac{(i\cos x - \sin x) dx}{\sqrt[n]{\cos nx}} = \int \frac{dy}{2 - y^n},$$
where $y = \frac{\cos x + i\sin x}{\sqrt[n]{\cos nx}}$. This yields two real integrals.
376. $\int \sin ax \sin bx \sin cx dx = -\frac{1}{4} \left\{ \frac{\cos (a - b + c)x}{a - b + c} + \frac{\cos (b + c - a)x}{b + c - a} + \frac{\cos (a + b - c)x}{a + b - c} - \frac{\cos (a + b + c)x}{a + b + c} \right\}.$
377. $\int \cos ax \cos bx \cos cx dx = \frac{1}{4} \left\{ \frac{\sin (a + b + c)x}{a + b + c} + \frac{\sin (b + c - a)x}{a + b - c} + \frac{\sin (a - b + c)x}{a + b - c} \right\}.$
378. $\int \sin ax \cos bx \cos cx dx = -\frac{1}{4} \left\{ \frac{\cos (a + b - c)x}{a + b - c} + \frac{\cos (a + c - a)x}{a + b - c} \right\}.$
379. $\int \cos ax \sin bx \sin cx dx = \frac{1}{4} \left\{ \frac{\sin (a + b - c)x}{a + b - c} + \frac{\cos (a + c - b)x}{a + c - b} \right\}.$
379. $\int \cos ax \sin bx \sin cx dx = \frac{1}{4} \left\{ \frac{\sin (a + b - c)x}{a + b - c} + \frac{\sin (a - b - c)x}{a + c - b} \right\}.$
380. $\int \sin^{-1}x dx = x \sin^{-1}x + \sqrt{1 - x^2}.$
381. $\int \cos^{-1}x dx = x \tan^{-1}x - \frac{1}{2} \log (1 + x^2).$
383. $\int \cot^{-1}x dx = x \cot^{-1}x + \frac{1}{2} \log (1 + x^2).$

-

384. $\int \sec^{-1} x \, dx = x \sec^{-1} x - \log \left(x + \sqrt{x^2 + 1} \right).$ **385.** $\int \csc^{-1} x \, dx = x \, \csc^{-1} x + \log \left(x + \sqrt{x^2 + 1} \right).$ **386.** $\int \operatorname{versin}^{-1} x \, dx = (x-1) \operatorname{versin}^{-1} x + \sqrt{2 x - x^2}.$ **387.** $\int (\sin^{-1}x)^2 dx = x (\sin^{-1}x)^2 - 2x + 2\sqrt{1-x^2} \sin^{-1}x.$ **388.** $\int (\cos^{-1}x)^2 dx = x (\cos^{-1}x)^2 - 2x - 2\sqrt{1-x^2} \cos^{-1}x.$ **389.** $\int x \sin^{-1} x \, dx = \frac{1}{4} \left[(2 \, x^2 - 1) \sin^{-1} x + x \sqrt{1 - x^2} \right].$ **390.** $\int x \cos^{-1} x \, dx = \frac{1}{4} \left[(2 \, x^2 - 1) \cos^{-1} x - x \sqrt{1 - x^2} \right].$ **391.** $\int x \tan^{-1} x \, dx = \frac{1}{2} [(x^2 + 1) \tan^{-1} x - x].$ **392.** $\int x \operatorname{ctn}^{-1} x \, dx = \frac{1}{2} [(x^2 + 1) \operatorname{ctn}^{-1} x + x].$, 393. $\int x \sec^{-1} x \, dx = \frac{1}{2} \left[x^2 \sec^{-1} x - \sqrt{x^2 - 1} \right].$ **394.** $\int x \csc^{-1} x \, dx = \frac{1}{2} \left[x^2 \csc^{-1} x + \sqrt{x^2 - 1} \right].$ **395.** $\int x^n \sin^{-1}x \, dx = \frac{1}{n+1} \left(x^{n+1} \sin^{-1}x - \int \frac{x^{n+1} \, dx}{\sqrt{1-x^2}} \right)^{-1}$ **396.** $\int x^n \cos^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \cos^{-1} x + \int \frac{x^{n+1} \, dx}{\sqrt{1-x^2}} \right).$

397. $\int x^n \tan^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \tan^{-1} x - \int \frac{x^{n+1} \, dx}{1+x^2} \right)$ **398.** $\int x^n \operatorname{etn}^{-1} x \, dx = \frac{1}{n+1} \left(x^{n+1} \operatorname{etn}^{-1} x + \int \frac{x^{n+1} \, dx}{1+x^2} \right).$ **399.** $\int \frac{\sin^{-1}x \, dx}{x^2} = \log\left(\frac{1-\sqrt{1-x^2}}{x}\right) - \frac{\sin^{-1}x}{x}$ 400. $\int \frac{\tan^{-1} x \, dx}{x^2} = \log x - \frac{1}{2} \log (1 + x^2) - \frac{\tan^{-1} x}{x}$ 401. $\int e^{ax} dx = \frac{e^{ax}}{c}$ 402. $\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1).$ **403.** $\int x^m e^{ax} dx = \frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx.$ **404.** $\int \frac{e^{ax}}{x^m} dx = \frac{1}{m-1} \left[-\frac{e^{ax}}{x^{m-1}} + a \int \frac{e^{ax} dx}{x^{m-1}} \right].$ 405. $\int a^{bx} dx = \frac{a^{bx}}{b \log a}$ **406.** $\int x^n a^x dx = \frac{a^x x^n}{\log a} - \frac{n a^x x^{n-1}}{(\log a)^2} + \frac{n(n-1) a^x x^{n-2}}{(\log a)^3} \cdots$ $\pm \frac{n(n-1)(n-2)\cdots 2.1 a^x}{(\log a)^{n+1}}$ **407.** $\int \frac{a^x dx}{x^n} = \frac{a^x}{n-1} \left[-\frac{1}{x^{n-1}} - \frac{\log a}{(n-2)x^{n-2}} \right]$ $-\frac{(\log a)^2}{(n-2)(n-3)x^{n-3}}-\cdots+\frac{(\log a)^{n-1}}{(n-2)(n-3)\cdots 2.1}\int \frac{a^x dx}{x} \, \bigg|.$ 408. $\int \frac{a^{x} dx}{x} = \log x + x \log a + \frac{(x \log a)^{2}}{2 \cdot 2!} + \frac{(x \log a)^{3}}{3 \cdot 3!} + \cdots$

53

409. $\int \frac{dx}{1+e^x} = \log \frac{e^x}{1+e^x}$ **410.** $\int \frac{dx}{a + be^{mx}} = \frac{1}{am} [mx - \log(a + be^{mx})].$ $411. \int \frac{dx}{ae^{mx} + be^{-mx}} = \frac{1}{m\sqrt{ab}} \tan^{-1} \left(e^{mx} \sqrt{\frac{a}{b}} \right).$ 412. $\int \frac{dx}{\sqrt{a+be^{mx}}} = \frac{1}{m\sqrt{a}} \{\log(\sqrt{a+be^{mx}} - \sqrt{a})\}$ $-\log(\sqrt{a+be^{mx}}+\sqrt{a})$ **413.** $\int \frac{xe^x dx}{(1+x)^2} = \frac{e^x}{1+x}, \quad \int x^n \cdot e^{ax^{n+1}} dx = \frac{e^{ax^{n+1}}}{a(n+1)}.$ **414.** $\int e^{ax} \sin x \, dx = \frac{e^{ax} (a \sin x - \cos x)}{1 + a^2}$ **415.** $\int e^{ax} \cos x \, dx = \frac{e^{ax} (\sin x + a \cos x)}{1 + a^2}.$ **416.** $\int e^{ax} \log x \, dx = \frac{e^{ax} \log x}{a} - \frac{1}{a} \int \frac{e^{ax} dx}{x}$. **417.** $\int e^{ax} \sin^2 x \, dx = \frac{e^{ax}}{4+a^2} \left(\sin x \left(a \sin x - 2 \cos x \right) + \frac{2}{a} \right)$ **418.** $\int e^{ax} \cos^2 x \, dx = \frac{e^{ax}}{4 + a^2} \left(\cos x \left(2 \sin x + a \cos x \right) + \frac{2}{a} \right).$ **419.** $\int e^{ax} \sin^{n} bx \, dx = \frac{1}{a^{2} + a^{2}b^{2}} \left((a \sin bx) + b \sin bx \right)^{2} dx$ $-nb\,\cos bx)e^{ax}\sin^{n-1}bx+n(n-1)b^2\int e^{ax}\sin^{n-2}bx\cdot dx\Big)\cdot$

54

420.
$$\int e^{ax} \cos^n bx \, dx = \frac{1}{a^2 + n^2 b^3} \bigg((a \, \cos bx + nb \, \sin bx) e^{ax} \cos^{n-1} bx + n \, (n-1) \, b^2 \int e^{ax} \cos^{n-2} bx \, dx \bigg).$$

421.
$$\int e^{ax} \tan^n x \, dx$$

= $\frac{e^{ax} \tan^{n-1} x}{n-1} - \frac{a}{n-1} \int e^{ax} \tan^{n-1} x \, dx - \int e^{ax} \tan^{n-2} x \, dx.$

422.
$$\int e^{ax} \operatorname{ctn}^{n} x \, dx$$

= $-\frac{e^{ax} \operatorname{ctn}^{n-1} x}{n-1} + \frac{a}{n-1} \int e^{ax} \operatorname{ctn}^{n-1} x \, dx - \int e^{ax} \operatorname{ctn}^{n-2} x \, dx.$

423.
$$\int \frac{e^{ax} dx}{\sin^n x} = -e^{ax} \frac{a \sin x + (n-2) \cos x}{(n-1)(n-2) \sin^{n-1} x} + \frac{a^2 + (n-2)^2}{(n-1)(n-2)} \int \frac{e^{ax} dx}{\sin^{n-2} x}.$$

424.
$$\int \frac{e^{ax} dx}{\cos^n x} = -e^{ax} \frac{a \cos x - (n-2) \sin x}{(n-1)(n-2) \cos^{n-1} x} + \frac{a^2 + (n-2)^2}{(n-1)(n-2)} \int \frac{e^{ax} dx}{\cos^{n-2} x}$$

$$425. \int e^{ax} \sin^{m} x \cos^{n} x \, dx$$

= $\frac{1}{(m+n)^{2} + a^{2}} \left\{ e^{ax} \sin^{mx} x \cos^{n-1} x (a \cos x + (m+n) \sin x) - ma \int e^{ax} \sin^{m-1} x \cos^{n-1} x \, dx + (n-1) (m+n) \int e^{ax} \sin^{m} x \cos^{n-2} x \, dx \right\}$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ e^{ax} \sin^{m-1}x \cos^n x (a \sin x - (m+n)\cos x) + na \int e^{ax} \sin^{m-1}x \cos^{n-1}x dx + (m-1)(m+n) \int e^{ax} \sin^{m-2}x \cos^n x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ e^{ax} \cos^{n-1}x \sin^{m-1}x (a \sin x \cos x + n \sin^2 x - m \cos^2 x) + n(n-1) \int e^{ax} \sin^m x \cos^{n-2}x dx + m(m-1) \int e^{ax} \sin^{m-2}x \cos^n x dx \right\}$$

$$= \frac{1}{(m+n)^2 + a^2} \left\{ e^{ax} \sin^{m-1}x \cos^{n-1}x (a \sin x \cos x + n \sin^2 x - m \cos^2 x) + n(n-1) \int e^{ax} \sin^{m-2}x \cos^{n-2}x dx + (m-n)(m+n-1) \int e^{ax} \sin^{m-2}x \cos^{n-2}x dx + (m-n)(m+n-1) \int e^{ax} \sin^{m-2}x \cos^{n-2}x dx + (m-n)(m+n-1) \int e^{ax} \sin^{m-2}x \cos^{n-2}x dx - m \cos^2 x + m \sin^2 x - m \cos^2 x + m \sin^2 x \cos^{n-1}x (a \sin x \cos x + n \sin^2 x - m \cos^2 x) + n(m-1) \int e^{ax} \sin^{m-2}x \cos^{n-2}x dx - (m-n)(m+n-1) \int e^{nx} \sin^{m-2}x \cos^{n-2}x dx + (m-n)(m+n) + (m-n)(m+n-1) \int e^{nx} \sin^{m-2}x \cos^{n-2}x dx$$

. 56

430. $\int \frac{(\log x)^n dx}{x} = \frac{(\log x)^{n+1}}{n+1}$ **431.** $\int \frac{dx}{\log x} = \log(\log x) + \log x + \frac{(\log x)^2}{2 \cdot 2!} + \frac{(\log x)^3}{3 \cdot 3!} + \cdots$ **432.** $\int \frac{dx}{(\log x)^n} = -\frac{x}{(n-1)(\log x)^{n-1}} + \frac{1}{n-1} \int \frac{dx}{(\log x)^{n-1}}$ **433.** $\int \frac{x^m dx}{(\log x)^n} = -\frac{x^{m+1}}{(n-1)(\log x)^{n-1}} + \frac{m+1}{n-1} \int \frac{x^m dx}{(\log x)^{n-1}} dx$ **434.** $\int \frac{x^m dx}{\log x} = \int \frac{e^{-y}}{y} dy$, where $y = -(m+1)\log x$. **435.** $\int \frac{dx}{x \log x} = \log(\log x)$, and $\int \frac{(n-1) dx}{x (\log x)^n} = \frac{-1}{(\log x)^{n-1}}$. **436.** $\int \log (a^2 + x^2) dx = x \cdot \log (a^2 + x^2) - 2x + 2a \cdot \tan^{-1}\left(\frac{x}{a}\right).$ $437. \int (a+bx)^m \log x \, dx$ $=\frac{1}{b(m+1)}\left[(a+bx)^{m+1}\log x - \int \frac{(a+bx)^{m+1}dx}{x}\right]$ $438. \int x^m \log\left(a + bx\right) dx$ $=\frac{1}{m+1}\left[x^{m+1}\log(a+bx)-b\int\frac{x^{m+1}dx}{a+bx}\right].$ $439. \int \frac{\log{(a+bx)}dx}{x}$ $= \log a \cdot \log x + \frac{bx}{a} - \frac{1}{2^2} \left(\frac{bx}{a}\right)^2 + \frac{1}{3^2} \left(\frac{bx}{a}\right)^3 - \cdots$ $= \frac{1}{2} (\log bx)^2 - \frac{a}{bx} + \frac{1}{2^2} \left(\frac{a}{bx}\right)^2 - \frac{1}{3^2} \left(\frac{a}{bx}\right)^3 + \cdots$

57

440.
$$\int \frac{\log x \, dx}{(a+bx)^m}$$

$$= \frac{1}{b(m-1)} \left[-\frac{\log x}{(a+bx)^{m-1}} + \int \frac{dx}{x(a+bx)^{m-1}} \right].$$
441.
$$\int \frac{\log x \, dx}{a+bx} = \frac{1}{b} \log x \cdot \log (a+bx) - \frac{1}{b} \int \frac{\log (a+bx) \, dx}{x}.$$
442.
$$\int (a+bx) \log x \, dx = \frac{(a+bx)^2}{2b} \log x - \frac{a^2 \log x}{2b} - ax - \frac{1}{4} bx^2.$$
443.
$$\int \frac{\log x \, dx}{\sqrt{a+bx}}$$

$$= \frac{2}{b} \left[(\log x - 2) \sqrt{a+bx} + \sqrt{a} \log (\sqrt{a+bx} + \sqrt{a}) - \sqrt{a} \log (\sqrt{a+bx} - \sqrt{a}) \right], \text{ if } a > 0$$

$$= \frac{2}{b} \left[(\log x - 2) \sqrt{a+bx} + 2 \sqrt{-a} \tan^{-1} \sqrt{\frac{a+bx}{-a}} \right], \text{ if } a < 0.$$
444.
$$\int \sin \log x \, dx = \frac{1}{2} x [\sin \log x - \cos \log x].$$
445.
$$\int \cos \log x \, dx = \frac{1}{2} x [\sin \log x + \cos \log x].$$
446.
$$\int \sinh x \, dx = \cosh x.$$
447.
$$\int \cosh x \, dx = \sinh x.$$
448.
$$\int \tanh x \, dx = \log \sinh x.$$
449.
$$\int \coth x \, dx = \log \sinh x.$$

,

•

. .

`

450.
$$\int \operatorname{sech} x \, dx = 2 \tan^{-1} e^{x}$$
.
451. $\int \operatorname{csch} x \, dx = \log \tanh \frac{x}{2}$.
452. $\int \sinh^{n} x \, dx = \frac{1}{n} \sinh^{n-1} x \cdot \cosh x - \frac{n-1}{n} \int \sinh^{n-2} x \, dx$
 $= \frac{1}{n+1} \sinh^{n+1} x \cosh x - \frac{n+2}{n+1} \int \sinh^{n+2} x \, dx$.
453. $\int \cosh^{n} x \, dx = \frac{1}{n} \sinh x \cdot \cosh^{n-1} x + \frac{n-1}{n} \int \cosh^{n-2} x \, dx$
 $= -\frac{1}{n+1} \sinh x \cosh^{n+1} x + \frac{n+2}{n+1} \int \cosh^{n+2} x \, dx$.
454. $\int x \sinh x \, dx = x \cosh x - \sinh x$.
455. $\int x \cosh x \, dx = x \sinh x - \cosh x$.
456. $\int x^{2} \sinh x \, dx = (x^{2} + 2) \cosh x - 2x \sinh x$.
457. $\int x^{n} \sinh x \, dx = \frac{1}{2} (\sinh x \cosh x - nx^{n-1} \sinh x + n(n-1) \int x^{n-2} \sinh x \, dx$.
458. $\int \sinh^{2} x \, dx = \frac{1}{2} (\sinh x \cosh x - x)$.
459. $\int \sinh x \cdot \cosh x \, dx = \frac{1}{4} \cosh (2x)$.
460. $\int \cosh^{2} x \, dx = \frac{1}{4} (\sinh x \cosh x + x)$.
461. $\int \tanh^{2} x \, dx = x - \tanh x$.

·

462.
$$\int \operatorname{ctnh}^{2} x \, dx = x - \operatorname{ctnh} x.$$

463. $\int \operatorname{sech}^{2} x \, dx = \tanh x.$
464. $\int \operatorname{csch}^{2} x \, dx = -\operatorname{ctnh} x.$
465. $\int \sinh^{-1} x \, dx = x \sinh^{-1} x - \sqrt{1 + x^{2}}.$
466. $\int \cosh^{-1} x \, dx = x \cosh^{-1} x - \sqrt{x^{2} - 1}.$
467. $\int \tanh^{-1} x \, dx = x \tanh^{-1} x + \frac{1}{2} \log (1 - x^{2}).$
468. $\int x \sinh^{-1} x \, dx = \frac{1}{4} [(2x^{2} + 1) \sinh^{-1} x - x \sqrt{1 + x^{2}}].$
469. $\int x \cosh^{-1} x \, dx = \frac{1}{4} [(2x^{2} - 1) \cosh^{-1} x - x \sqrt{x^{2} - 1}].$
470. $\int \frac{dx}{\cosh a + \cosh x}$
 $= \operatorname{csch} a [\log \cosh \frac{1}{2} (x + a) - \log \cosh \frac{1}{2} (x - a)],$
 $= 2 \operatorname{csch} a \cdot \tanh^{-1} (\tanh \frac{1}{2} x \cdot \tanh \frac{1}{2} a).$
471. $\int \frac{dx}{\cos a + \cosh x} = 2 \operatorname{csc} a \cdot \tan^{-1} (\tanh \frac{1}{2} x \cdot \tan \frac{1}{2} a).$
472. $\int \frac{dx}{1 + \cos a \cdot \cosh x} = 2 \operatorname{csc} a \cdot \tanh^{-1} (\tanh \frac{1}{2} x \cdot \tan \frac{1}{2} a).$
473. $\int \sinh x \cdot \cos x \, dx = \frac{1}{2} (\cosh x \cdot \cos x + \sinh x \cdot \sin x).$
474. $\int \cosh x \cdot \cos x \, dx = \frac{1}{2} (\cosh x \cdot \sin x - \sinh x \cdot \sin x).$
475. $\int \sinh x \cdot \sin x \, dx = \frac{1}{2} (\cosh x \cdot \sin x - \sinh x \cdot \cos x).$

.

.

476.
$$\int \cosh x \cdot \sin x \, dx = \frac{1}{2} (\sinh x \cdot \sin x - \cosh x \cdot \cos x).$$
477.
$$\int \sinh (mx) \sinh (nx) \, dx$$

$$= \frac{1}{m^2 - n^2} \left[m \sinh (nx) \cosh (mx) - n \cosh (nx) \sinh (mx) \right].$$
478.
$$\int \cosh (mx) \sinh (nx) \, dx$$

$$= \frac{1}{m^2 - n^2} \left[m \sinh (nx) \sinh (mx) - n \cosh (nx) \cosh (mx) \right].$$
479.
$$\int \cosh (mx) \cosh (nx) \, dx$$

$$= \frac{1}{m^2 - n^2} \left[m \sinh (mx) \cosh (nx) - n \sinh (nx) \cosh (mx) \right].$$

5

MISCELLANEOUS DEFINITE INTEGRALS.

VI. MISCELLANEOUS DEFINITE INTEGRALS.* **480.** $\int_{0}^{\infty} \frac{a \, dx}{a^2 + x^2} = \frac{\pi}{2}$, if a > 0; 0, if a = 0; $-\frac{\pi}{2}$, if a < 0. **481.** $\int_{0}^{\infty} x^{n-1} e^{-x} dx = \int_{0}^{1} \left[\log \frac{1}{x} \right]^{n-1} dx \equiv \Gamma(n).$ $\Gamma(z+1) = z \cdot \Gamma(z)$, if z > 0. $\Gamma(y) \cdot \Gamma(1-y) = \frac{\pi}{\sin \pi y}, \text{ if } 1 > y > 0. \quad \Gamma(2) = \Gamma(1) = 1.$ $\Gamma(n+1) = n!$, if n is an integer. $\Gamma(z) = \Pi(z-1).$ $\Gamma(\frac{1}{2}) = \sqrt{\pi}.$ $Z(y) = D_y \lceil \log \Gamma(y) \rceil.$ Z(1) = -0.577216.**482.** $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = \int_{0}^{\infty} \frac{x^{m-1} dx}{(1+x)^{m+n}} = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}.$ **483.** $\int_{a}^{\frac{\pi}{2}} \sin^{n} x \, dx = \int_{a}^{\frac{\pi}{2}} \cos^{n} x \, dx$ $=\frac{1\cdot 3\cdot 5\cdots (n-1)}{2\cdot 4\cdot 6\cdots (n)}\cdot \frac{\pi}{2}, \text{ if } n \text{ is an even integer,}$ $=\frac{2\cdot 4\cdot 6\cdots (n-1)}{1\cdot 3\cdot 5\cdot 7\cdots n}, \text{ if } n \text{ is an odd integer,}$ $= \frac{1}{2}\sqrt{\pi} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)}, \text{ for any value of } n \text{ greater} \\ \text{than } -1.$

484.
$$\int_0^\infty \frac{\sin mx \, dx}{x} = \frac{\pi}{2}, \text{ if } m > 0; 0, \text{ if } m = 0; -\frac{\pi}{2}, \text{ if } m < 0.$$

* For very complete lists of definite integrals, see Bierens de Haan, Tables d'intégrales définies, Amsterdam, 1858-64, and Nouv. Tables d'intégrales définies, Leyden, 1867.

62

$$485. \int_{0}^{\infty} \frac{\sin x \cdot \cos mx \, dx}{x} = 0, \text{ if } m < -1 \text{ or } m > 1; \\ \frac{\pi}{4}, \text{ if } m = -1 \text{ or } m = 1; \frac{\pi}{2}, \text{ if } -1 < m < 1.$$

$$486. \int_{0}^{\infty} \frac{\sin^{2} x \, dx}{x^{2}} = \frac{\pi}{2} \cdot \\ 487. \int_{0}^{\infty} \cos(x^{5}) \, dx = \int_{0}^{\infty} \sin(x^{5}) \, dx = \frac{1}{2} \sqrt{\frac{\pi}{2}} \cdot \\ 488. \int_{0}^{\pi} \sin kx \cdot \sin mx \, dx = \int_{0}^{\pi} \cos kx \cdot \cos mx \, dx = 0, \\ \text{ if } k \text{ is different from } m. \\ 489. \int_{0}^{\pi} \sin^{2} mx \, dx = \int_{0}^{\pi} \cos^{2} mx \, dx = \frac{\pi}{2} \cdot \\ 490. \int_{0}^{\infty} \frac{\cos mx \, dx}{1 + x^{2}} = \frac{\pi}{2} \cdot e^{-m}. \qquad m > 0. \\ 491. \int_{0}^{\infty} \frac{\cos x \, dx}{\sqrt{x}} = \int_{0}^{\infty} \frac{\sin x \, dx}{\sqrt{x}} = \sqrt{\frac{\pi}{2}} \cdot \\ 492. \int_{0}^{\infty} e^{-a^{2}x^{2}} \, dx = \frac{1}{2a} \sqrt{\pi} \cdot = \frac{1}{2a} \Gamma(\frac{1}{2}). \\ 493. \int_{0}^{\infty} x^{2n} e^{-ax^{2}} \, dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}} \cdot \\ 495. \int_{0}^{\infty} e^{-x^{2} - \frac{x^{4}}{x^{4}}} \, dx = \frac{e^{-2a} \sqrt{\pi}}{2} \cdot \qquad a > 0. \\ 496. \int_{0}^{\infty} e^{-nx} \, dx = \frac{1}{2n} \sqrt{\frac{\pi}{n}} \cdot \\ 497. \int_{0}^{\infty} \frac{e^{-nx}}{\sqrt{x}} \, dx = \sqrt{\frac{\pi}{n}}. \end{cases}$$

•,

 $498. \int_0^\infty \frac{dx}{e^{nx} + e^{-nx}} = \frac{\pi}{A_n}.$ 499. $\int_{0}^{\infty} \frac{x \, dx}{e^{nx} - e^{-nx}} = \frac{\pi^2}{8 n^2}.$ 500. $\int_{0}^{\pi i} \sinh(mx) \cdot \sinh(nx) dx = \int_{0}^{\pi i} \cosh(mx) \cdot \cosh(nx) dx$ = 0, if m is different from n. **501.** $\int_{0}^{\pi i} \cosh^{2}(mx) dx = -\int_{0}^{\pi i} \sinh^{2}(mx) dx = \frac{\pi i}{2}$ **502.** $\int_{-\pi i}^{+\pi i} \sinh(mx) dx = 0.$ $503. \int_{a}^{\pi i} \cosh(mx) \, dx = 0.$ 504. $\int_{-\pi}^{\pi i} \sinh(mx) \cosh(nx) dx = 0.$ 505. $\int_0^{\pi i} \sinh(mx) \cosh(mx) dx = 0.$ 506. $\int_{a}^{\infty} e^{-ax} \cos mx \, dx = \frac{a}{a^2 + m^2}$, if a > 0. 507. $\int_{0}^{\infty} e^{-ax} \sin mx \, dx = \frac{m}{a^2 + m^2}$, if a > 0.

$$508. \int_0^\infty e^{-a^2x^2} \cos bx \, dx = \frac{\sqrt{\pi} \cdot e^{-\frac{1}{4a^2}}}{2a}.$$

a > 0.

- 509. $\int_{0}^{1} \frac{\log x}{1-x} dx = -\frac{\pi^{2}}{6}$ 510. $\int_{0}^{1} \frac{\log x}{1+x} dx = -\frac{\pi^{2}}{12}$
- **511.** $\int_0^1 \frac{\log x}{1-x^2} \, dx = -\frac{\pi^2}{8}$

64

MISCELLANEOUS DEFINITE INTEGRALS.

.

.

512.
$$\int_{0}^{1} \log\left(\frac{1+x}{1-x}\right) \cdot \frac{dx}{x} = \frac{\pi^{2}}{4} \cdot$$

513.
$$\int_{0}^{1} \frac{\log x \, dx}{\sqrt{1-x^{2}}} = -\frac{\pi}{2} \log 2.$$

514.
$$\int_{0}^{1} \frac{(x^{p} - x^{q}) \, dx}{\log x} = \log \frac{p+1}{q+1}, \text{ if } p+1 > 0, q+1 > 0.$$

515.
$$\int_{0}^{1} (\log x)^{n} \, dx = (-1)^{n} \cdot n!.$$

516.
$$\int_{0}^{1} \left(\log \frac{1}{x}\right)^{\frac{1}{2}} \, dx = \frac{\sqrt{\pi}}{2} \cdot$$

517.
$$\int_{0}^{1} \left(\log \frac{1}{x}\right)^{n} \, dx = n!.$$

518.
$$\int_{0}^{1} \frac{dx}{\sqrt{\log\left(\frac{1}{x}\right)^{n}}} = \sqrt{\pi}.$$

519.
$$\int_{0}^{1} x^{m} \log\left(\frac{1}{x}\right)^{n} \, dx = \frac{\Gamma(n+1)}{(m+1)^{n+1}}, \text{ if } m+1 > 0, n+1 > 0.$$

520.
$$\int_{0}^{\infty} \log\left(\frac{e^{x}+1}{e^{x}-1}\right) \, dx = \frac{\pi^{2}}{4} \cdot$$

521.
$$\int_{0}^{\frac{\pi}{2}} \log \sin x \, dx = \int_{0}^{\frac{\pi}{2}} \log \cos x \, dx = -\frac{\pi}{2} \cdot \log 2.$$

522.
$$\int_{0}^{\pi} x \cdot \log \sin x \, dx = -\frac{\pi^{2}}{2} \log 2.$$

523.
$$\int_{0}^{\pi} \log(a \pm b \cos x) \, dx = \pi \log\left(\frac{a + \sqrt{a^{2} - b^{2}}}{2}\right) \cdot a \ge b.$$

Digitized by Google

65

ELLIPTIC INTEGRALS.

VII. ELLIPTIC INTEGRALS.

$$\begin{split} F(\phi, k) &\equiv \int_{0}^{\phi} \frac{d\theta}{\sqrt{1 - k^{2} \sin^{2} \theta}} \equiv \int_{0}^{x} \frac{dz}{\sqrt{1 - z^{2}} \sqrt{1 - k^{2} z^{2}}} \equiv u, \\ \text{where } k^{2} < 1, \ x = \sin \phi. \\ E(\phi, k) &\equiv \int_{0}^{\phi} \sqrt{1 - k^{2} \sin^{2} \theta} \cdot d\theta. \\ \Pi(\phi, n, k) &\equiv \int_{0}^{\phi} \frac{d\theta}{(1 + n \sin^{2} \theta) \sqrt{1 - k^{2} \sin^{2} \theta}} \cdot \\ \phi &\equiv \operatorname{am} u, \sin \phi \equiv x \equiv \operatorname{sn} u, \cos \phi \equiv \sqrt{1 - x^{2}} \equiv \operatorname{cn} u, \tan \phi \equiv \operatorname{tn} u, \\ \Delta \phi \equiv \sqrt{1 - k^{2} \sin^{2} \phi} \equiv \sqrt{1 - k^{2} x^{2}} \equiv \operatorname{dn} u, \ k^{n} \equiv 1 - k^{2}. \\ u \equiv \operatorname{am}^{-1}(\phi, k) \equiv \operatorname{sn}^{-1}(x, k) \equiv \operatorname{cn}^{-1}(\sqrt{1 - x^{2}}, k) \\ &\equiv \operatorname{dn}^{-1}(\sqrt{1 - k^{2} x^{3}}, k). \\ K \equiv F(\frac{1}{2} \pi, k), \ K' \equiv F(\frac{1}{2} \pi, k'), \ E \equiv E(\frac{1}{2} \pi, k), \ E' \equiv E(\frac{1}{2} \pi, k'). \\ \operatorname{If} k_{0} &= \frac{2 k^{4}}{1 + k} \text{ and } \tan \phi \equiv \frac{\sin 2 \omega}{k + \cos 2 \omega}, \end{split}$$

$$F(\phi, k) \equiv \frac{2}{1+k} F(\omega, k_0).$$

524.
$$\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}}$$

= $\frac{\pi}{2} \left[1 + (\frac{1}{2})^{2}k^{2} + (\frac{1\cdot 3}{2\cdot 4})^{2}k^{4} + (\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6})^{2}k^{6} + \cdots \right], \text{ if } k^{2} < 1,$
= K.

525.
$$\int_{0}^{\overline{2}} \sqrt{1 - k^{2} \sin^{2} \theta} \, d\theta$$

= $\frac{\pi}{2} \left[1 - \left(\frac{1}{2}\right)^{2} k^{3} - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{2} \frac{k^{4}}{3} - \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2} \frac{k^{6}}{5} - \cdots \right], \text{ if } k^{2} < 1,$
= $E.$

526.
$$\int_{0}^{\phi} \frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}} = \frac{2}{\pi} \phi \cdot K - \sin \phi \cos \phi \left[\frac{1 \cdot 1}{2 \cdot 2} k^{2} + \frac{1 \cdot 3}{2 \cdot 4} A_{4} k^{4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} A_{6} k^{6} + \cdots \right]$$
$$= F(\phi, k),$$

where $A_4 \equiv \frac{1}{4} \sin^2 \phi + \frac{3}{2 \cdot 4}$, $A_6 \equiv \frac{1}{6} \sin^4 \phi + \frac{5}{6 \cdot 4} \sin^2 \phi + \frac{5 \cdot 3}{6 \cdot 4 \cdot 2}$, $A_8 \equiv \frac{1}{8} \sin^6 \phi + \frac{7}{8 \cdot 6} \sin^4 \phi + \frac{7 \cdot 5}{8 \cdot 6 \cdot 4} \sin^2 \phi + \frac{7 \cdot 5 \cdot 3}{8 \cdot 6 \cdot 4 \cdot 2}$, etc.

527.
$$\int_{0}^{\phi} \sqrt{1-k^{2} \sin^{2} \theta} \cdot d\theta = \frac{2}{\pi} \phi \cdot E + \sin \phi \cos \phi \left[\frac{1 \cdot 1}{2 \cdot 2} k^{2} + \frac{1}{2 \cdot 4} k^{4} A_{4} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6} k^{6} A_{6} + \cdots \right]$$
$$= E(\phi, k).$$

528.*
$$\int_0^x \frac{dx}{\sqrt{(1-x^3)(1-k^2x^2)}} = \operatorname{sn}^{-1}(x, k)$$
$$= F(\sin^{-1}x, k). \quad 0 < x < 1.$$

529.
$$\int_{x}^{1} \frac{dx}{\sqrt{(1-x^{2})(k'^{2}+k^{2}x^{2})}} = \operatorname{cn}^{-1}(x, k)$$
$$= F(\cos^{-1}x, k) = \operatorname{sn}^{-1}(\sqrt{1-x^{2}}, k). \qquad 0 < x < 1.$$

530.
$$\int_{x}^{1} \frac{dx}{\sqrt{(1-x^{2})(x^{2}-k^{\prime 2})}} = dn^{-1}(x, k)$$
$$= F(\Delta^{-1}x, k) = sn^{-1}\left(\frac{1}{k}\sqrt{1-x^{2}}, k\right) \cdot 0 < x < 1.$$

531.
$$\int_0^x \frac{dx}{\sqrt{(1+x^2)(1+k'^2x^2)}} = \operatorname{tn}^{-1}(x, k)$$
$$= F(\operatorname{tan}^{-1}x, k) = \operatorname{sn}^{-1}\left(\frac{x}{\sqrt{1+x^2}}, k\right) \cdot \quad 0 < x < 1.$$

* The next forty-two integrals are copied in order from a class-room list of Prof. W. E. Byerly.

532.
$$\int_0^x \frac{dx}{\sqrt{x(1-x)(1-k^2x)}} = 2 \operatorname{sn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\sin^{-1}\sqrt{x}, k). \quad 0 < x < 1.$$

533.
$$\int_{x}^{1} \frac{dx}{\sqrt{x(1-x)(k''+k^{3}x)}} = 2 \operatorname{cn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\cos^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}(\sqrt{1-x}, k). \quad 0 < x < 1.$$

534.
$$\int_{x}^{1} \frac{dx}{\sqrt{x(1-x)(x-k'^{2})}} = 2 \operatorname{dn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\Delta^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}\left(\frac{1}{k}\sqrt{1-x}, k\right) \cdot 0 < x < 1.$$

535.
$$\int_0^x \frac{dx}{\sqrt{(1+x)(1+k^{12}x)}} = 2 \operatorname{tn}^{-1}(\sqrt{x}, k)$$
$$= 2 F(\tan^{-1}\sqrt{x}, k) = 2 \operatorname{sn}^{-1}\left(\sqrt{\frac{x}{1+x}}, k\right) \cdot 0 < x < 1.$$

536.
$$\int_{0}^{x} \frac{dx}{\sqrt{(a^{2}-x^{2})(b^{2}-x^{2})}} = \frac{1}{a} \operatorname{sn}^{-1}\left(\frac{x}{b}, \frac{b}{a}\right) \cdot a > b > x > 0.$$

537.
$$\int_{x}^{\infty} \frac{dx}{\sqrt{(x^{2}-a^{2})(x^{2}-b^{2})}} = \frac{1}{a} \operatorname{sn}^{-1}\left(\frac{a}{x}, \frac{b}{a}\right) \cdot \qquad x > a > b.$$

538.
$$\int_{x}^{b} \frac{dx}{\sqrt{(a^{2} + x^{3})(b^{2} - x^{3})}}$$
$$= \frac{1}{\sqrt{a^{2} + b^{2}}} \operatorname{cn}^{-1}\left(\frac{x}{b}, \frac{b}{\sqrt{a^{2} + b^{3}}}\right) \cdot \qquad b > x > 0.$$

539.
$$\int_{b}^{x} \frac{dx}{\sqrt{(a^{2} + x^{2})(x^{2} - b^{2})}}$$
$$= \frac{1}{\sqrt{a^{3} + b^{2}}} \operatorname{cn}^{-1}\left(\frac{b}{x}, \frac{a}{\sqrt{a^{3} + b^{2}}}\right) \cdot \qquad x > b > 0.$$

.

Digitized by Google

`

•

540.
$$\int_{x}^{a} \frac{dx}{\sqrt{(a^{2}-x^{2})(x^{2}-b^{2})}}$$
$$= \frac{1}{a} \operatorname{sn}^{-1} \left(\sqrt{\frac{a^{2}-x^{2}}{a^{2}-b^{2}}}, \sqrt{\frac{a^{2}-b^{2}}{a^{2}}} \right) \cdot \qquad a > x > b.$$

541.
$$\int_{0}^{12} \frac{dx}{\sqrt{(x^{2} + a^{2})(x^{2} + b^{2})}}$$
$$= \frac{1}{a} \tan^{-1} \left(\frac{x}{b}, \sqrt{\frac{a^{2} - b^{2}}{a^{2}}} \right) \cdot x > 0.$$
$$a > \beta > \gamma.$$

542.
$$\int_{x}^{\infty} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{x-\gamma}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \qquad x > a.$$

543.
$$\int_{a}^{x} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{x-a}{x-\beta}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \qquad x > a.$$

544.
$$\int_{x}^{a} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-x}{a-\beta}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right) \cdot \quad a > x > \beta.$$

545.
$$\int_{\beta}^{x} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\beta} \cdot \frac{x-\beta}{x-\gamma}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right) \cdot a > x > \beta.$$

į

546.
$$\int_{x}^{\beta} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\beta-\gamma} \cdot \frac{\beta-x}{a-x}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \beta > x > \gamma.$$

Digitized by Google

.

547.
$$\int_{\gamma}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{x-\gamma}{\beta-\gamma}}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \right) \cdot \beta > x > \gamma.$$

548.
$$\int_{x}^{\gamma} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\gamma-x}{\beta-x}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right) \cdot \qquad \gamma > x.$$

549.
$$\int_{-\infty}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)}} = \frac{2}{\sqrt{a-\gamma}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-x}}, \sqrt{\frac{a-\beta}{a-\gamma}} \right) \cdot \gamma > x.$$

 $a > \beta > \gamma > \delta$.

550.
$$\int_{a}^{x} \frac{dx}{\sqrt{(x-a)(x-\beta)(x-\gamma)(x-\delta)}} = \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{a-\delta} \cdot \frac{x-a}{x-\beta}}, \sqrt{\frac{\beta-\gamma}{a-\gamma} \cdot \frac{a-\delta}{\beta-\delta}}\right).$$

551.
$$\int_{x}^{a} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)(x-\delta)}} = \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{a-\beta} \cdot \frac{a-x}{x-\delta}}, \sqrt{\frac{a-\beta}{a-\gamma} \cdot \frac{\gamma-\delta}{\beta-\delta}} \right) \cdot a > x > \beta.$$

552.
$$\int_{\beta}^{x} \frac{dx}{\sqrt{(a-x)(x-\beta)(x-\gamma)(x-\delta)}} = \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\beta} \cdot \frac{x-\beta}{x-\gamma}}, \sqrt{\frac{a-\beta}{a-\gamma} \cdot \frac{\gamma-\delta}{\beta-\delta}} \right) \cdot a > x > \beta.$$

Digitized by Google

4

553.
$$\int_{x}^{\beta} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)(x-\delta)}}$$
$$= \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\beta-\gamma} \cdot \frac{\beta-x}{a-x}}, \sqrt{\frac{\beta-\gamma}{a-\gamma} \cdot \frac{a-\delta}{\beta-\delta}} \right) \cdot \beta > x > \gamma.$$

554.
$$\int_{\gamma}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(x-\gamma)(x-\delta)}} = \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{\beta-\gamma}} \cdot \frac{x-\gamma}{x-\delta}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta}\right) \cdot \beta > x > \gamma$$

555.
$$\int_{x}^{\gamma} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(x-\delta)}} = \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{\beta-\delta}{\gamma-\delta}} \cdot \frac{\gamma-x}{\beta-x}, \sqrt{\frac{a-\beta}{a-\gamma}} \cdot \frac{\gamma-\delta}{\beta-\delta} \right).$$
$$\gamma > x > \delta.$$

556.
$$\int_{\delta}^{x} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(x-\delta)}} = \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{\gamma-\delta} \cdot \frac{x-\delta}{a-x}}, \sqrt{\frac{a-\beta}{a-\gamma} \cdot \frac{\gamma-\delta}{\beta-\delta}} \right).$$
$$\gamma > x > \delta$$

557.
$$\int_{x}^{\delta} \frac{dx}{\sqrt{(a-x)(\beta-x)(\gamma-x)(\delta-x)}} = \frac{2}{\sqrt{(a-\gamma)(\beta-\delta)}} \operatorname{sn}^{-1} \left(\sqrt{\frac{a-\gamma}{a-\delta}} \cdot \frac{\delta-x}{\gamma-x}, \sqrt{\frac{\beta-\gamma}{a-\gamma}} \cdot \frac{a-\delta}{\beta-\delta} \right) \cdot \delta > x.$$
558.
$$\int \operatorname{sn} x \, dx = \frac{1}{k} \cosh^{-1} \left(\frac{\operatorname{dn} x}{k'} \right) \cdot \delta > x.$$
559.
$$\int \operatorname{cn} x \, dx = \frac{1}{k} \cos^{-1} (\operatorname{dn} x).$$

560. $\int dn x dx = \sin^{-1}(\operatorname{sn} x) = \operatorname{am} x.$ 561. $\int \frac{dx}{\sin x} = \log \left[\frac{\sin x}{\cos x + \sin x} \right]$ 562. $\int \frac{dx}{\operatorname{cn} x} = \frac{1}{k'} \log \left[\frac{k' \operatorname{sn} x + \operatorname{dn} x}{\operatorname{cn} x} \right].$ 563. $\int \frac{dx}{dn x} = \frac{1}{k'} \tan^{-1} \left[\frac{k' \operatorname{sn} x - \operatorname{cn} x}{k' \operatorname{sn} x + \operatorname{cn} x} \right].$ 564. $\int_{a}^{x} \sin^{2} x \, dx = \frac{1}{b^{2}} [x - E(\operatorname{am} x, k)].$ 565. $\int_0^x \operatorname{cn}^2 x \, dx = \frac{1}{k^2} [E(\operatorname{an} x, k) - k'^2 x].$ **566.** $\int_{a}^{x} dn^{2} x dx = E(am x, k).$ **567.** $(m+1) \int \operatorname{sn}^m x \, dx = (m+2) (1+k^2) \int \operatorname{sn}^{m+2} x \, dx$ $-(m+3)k^{2}\int \operatorname{sn}^{m+4}x\,dx + \operatorname{sn}^{m+1}x\,\operatorname{cn}x\,\operatorname{dn}x.$ **568.** $(m+1)k^{\prime 2}\int \operatorname{cn}^{m} x \, dx = (m+2)(1-2k^{2})\int \operatorname{cn}^{m+2} x \, dx$ $+(m+3)k^{2}\int cn^{m+4}x dx - cn^{m+1}x sn x dn x.$ 569. $(m+1)k^{2}\int dn^{m}x dx = (m+2)(2-k^{2})\int dn^{m+2}x dx$ $-(m+3)\int \mathrm{dn}^{m+4}x\,dx+k^2\,\mathrm{dn}^{m+1}x\,\mathrm{sn}\,x\,\mathrm{cn}\,x.$ Since $\sin^2 \theta \equiv \frac{1}{k^2} - \frac{1}{k^2} (1 - k^2 \cdot \sin^2 \theta)$, $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{2}\theta \cdot d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}} = \frac{1}{k^{2}} \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^{2}\sin^{2}\theta}} - \frac{1}{k^{2}} \int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2}\sin^{2}\theta} \cdot d\theta.$

VIII. AUXILIARY FORMULAS.

A. --- TRIGONOMETRIC FUNCTIONS.

570. $\tan a \cdot \operatorname{ctn} a = \sin a \cdot \csc a = \cos a \cdot \sec a = 1$, $\tan a = \sin a \div \cos a$, $\sec^2 a = 1 + \tan^2 a$, $\csc^2 a = 1 + \operatorname{ctn}^2 a$, $\sin^2 a + \cos^2 a = 1$.

571. $\sin a = \sqrt{1 - \cos^2 a} = 2 \sin \frac{1}{2} a \cdot \cos \frac{1}{2} a = \cos a \cdot \tan a$

$$=\frac{1}{\sqrt{1+\cot^2 a}} = \frac{\tan a}{\sqrt{1+\tan^2 a}} = \sqrt{\frac{1-\cos 2a}{2}} = \frac{2\tan \frac{1}{2}a}{1+\tan^2 \frac{1}{2}a}$$
$$=\sqrt{\frac{\sec^2 a - 1}{\sec^2 a}} = \cot \frac{1}{2}a \cdot (1-\cos a) = \tan \frac{1}{2}a \cdot (1+\cos a).$$

572.
$$\cos a = \sqrt{1 - \sin^2 a} = \frac{1}{\sqrt{1 + \tan^2 a}} = \frac{\cot a}{\sqrt{1 + \cot^2 a}}$$

 $= \sqrt{\frac{1 + \cos 2a}{2}} = \frac{1 - \tan^2 \frac{1}{2}a}{1 + \tan^2 \frac{1}{2}a} = \cos^2 \frac{1}{2}a - \sin^2 \frac{1}{2}a$
 $= 1 - 2\sin^2 \frac{1}{2}a = 2\cos^2 \frac{1}{2}a - 1 = \sin a \cdot \cot a$
 $= \frac{\sin 2a}{2\sin a} = \sqrt{\frac{\csc^2 a - 1}{\csc^2 a}} = \frac{\cot \frac{1}{2}a - \tan \frac{1}{2}a}{\cot \frac{1}{2}a + \tan \frac{1}{2}a}$
573. $\tan a = \frac{\sin a}{\sqrt{1 - \sin^2 a}} = \frac{\sqrt{1 - \cos^2 a}}{\cos a} = \frac{\sin 2a}{1 + \cos 2a}$
 $= \frac{1 - \cos 2a}{\sin 2a} = \sqrt{\frac{1 - \cos 2a}{1 + \cos 2a}} = \frac{2\tan \frac{1}{2}a}{1 - \tan^2 \frac{1}{2}a}$
 $= \frac{\sec a}{\csc a} = \frac{2}{\cot \frac{1}{2}a - \tan \frac{1}{2}a} = \frac{2 \cot \frac{1}{2}a}{\cot^2 \frac{1}{2}a - 1}$

ĸ	7	' /	
υ		7	E.,

	<i>– α</i> .	90°±α.	$180^{\circ} \pm \alpha$.	270° ± α.	$360^{\circ} \pm \alpha$.
sin cos tan ctn sec csc	$-\sin \alpha$ + cos α - tan α - ctn α + sec α - csc α	$+ \cos \alpha$ $\mp \sin \alpha$ $\mp \cot \alpha$ $\mp \tan \alpha$ $\mp \csc \alpha$ $+ \sec \alpha$	$ \begin{array}{l} \mp \sin \alpha \\ -\cos \alpha \\ \pm \tan \alpha \\ \pm \cot \alpha \\ -\sec \alpha \\ \mp \csc \alpha \end{array} $	$-\cos \alpha$ $\pm \sin \alpha$ $\mp \cot \alpha$ $\mp \tan \alpha$ $\pm \csc \alpha$ $-\sec \alpha$	$ \pm \sin \alpha + \cos \alpha \pm \tan \alpha \pm \operatorname{ctn} \alpha + \sec \alpha \pm \csc \alpha $

575.

	0°.	30°.	45°.	60°.	90°.	120°.	135°.	150°.	180°.
sin	0	ł	$\frac{1}{2}\sqrt{2}$	<u></u> <u></u> <u></u>	1	<u>∔</u> √3	$\frac{1}{2}\sqrt{2}$	· 1	0
cos	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	1	· 0	1	$-\frac{1}{2}\sqrt{2}$	<u>-</u> <u>‡</u> √3	-1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	œ	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0
ctn	œ	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	80
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	œ	-2	$-\sqrt{2}$	$-\frac{2}{\sqrt{3}}$	-1
csc	x	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	8

576. $\sin \frac{1}{2} a = \sqrt{\frac{1}{2}(1 - \cos a)}.$

577.
$$\cos \frac{1}{2}a = \sqrt{\frac{1}{2}(1 + \cos a)}.$$

- 578. $\tan \frac{1}{2}a = \sqrt{\frac{1-\cos a}{1+\cos a}} = \frac{1-\cos a}{\sin a} = \frac{\sin a}{1+\cos a}$
- 579. $\sin 2a = 2 \sin a \cos a$.

580. $\sin 3 a = 3 \sin a - 4 \sin^3 a$.

581. $\sin 4 a = 8 \cos^3 a \cdot \sin a - 4 \cos a \sin a$.

)

.

582.	$\sin 5 a = 5 \sin a - 20 \sin^3 a + 16 \sin^5 a.$
583.	$\sin 6 a = 32 \cos^5 a \sin a - 32 \cos^3 a \sin a + 6 \cos a \sin a.$
584 .	$\cos 2 a = \cos^2 a - \sin^2 a = 1 - 2 \sin^2 a = 2 \cos^2 a - 1.$
585.	$\cos 3 a = 4 \cos^8 a - 3 \cos a.$
586.	$\cos 4 a = 8 \cos^4 a - 8 \cos^2 a + 1.$
5 87 .	$\cos 5 a = 16 \cos^5 a - 20 \cos^3 a + 5 \cos a.$
588 .	$\cos 6 a = 32 \cos^6 a - 48 \cos^4 a + 18 \cos^2 a - 1.$
5 89 .	$\tan 2 a = \frac{2 \tan a}{1 - \tan^2 a}$
590 .	$\operatorname{ctn} 2 a = \frac{\operatorname{ctn}^2 a - 1}{2 \operatorname{ctn} a}$
5 9 1.	$\sin(a \pm \beta) = \sin a \cdot \cos \beta \pm \cos a \cdot \sin \beta.$
592.	$\cos{(a \pm \beta)} = \cos{a} \cdot \cos{\beta} \mp \sin{a} \cdot \sin{\beta}.$
593 .	$\tan (a \pm \beta) = \frac{\tan a \pm \tan \beta}{1 \mp \tan a \cdot \tan \beta}.$
5 94 .	$\operatorname{ctn} (a \pm \beta) = \frac{\operatorname{ctn} a \cdot \operatorname{ctn} \beta \mp 1}{\operatorname{ctn} a \pm \operatorname{ctn} a}$
5 95 .	$\sin a \pm \sin \beta = 2 \sin \frac{1}{2} (a \pm \beta) \cdot \cos \frac{1}{2} (a \mp \beta).$
5 96 .	$\cos a + \cos \beta = 2 \cos \frac{1}{2}(a+\beta) \cdot \cos \frac{1}{2}(a-\beta).$
597.	$\cos a - \cos \beta = -2 \sin \frac{1}{2} (a + \beta) \cdot \sin \frac{1}{2} (a - \beta).$
5 98 .	$\tan a \pm \tan \beta = \frac{\sin (a \pm \beta)}{\cos a \cdot \cos \beta}.$
5 99 .	$\operatorname{ctn} a \pm \operatorname{ctn} \beta = \pm \frac{\sin \left(a \pm \beta\right)}{\sin a \sin \beta}$

 $\pm \frac{1}{\sin a \cdot \sin \beta}$ υu μ

- 600. $\frac{\sin a \pm \sin \beta}{\cos a + \cos \beta} = \tan \frac{1}{2} (a \pm \beta).$ 601. $\frac{\sin a \pm \sin \beta}{\cos a - \cos \beta} = -\operatorname{ctn} \frac{1}{2}(a \mp \beta).$ 602. $\frac{\sin a + \sin \beta}{\sin a - \sin \beta} = \frac{\tan \frac{1}{2}(a + \beta)}{\tan \frac{1}{2}(a - \beta)}$ 603. $\sin^2 a - \sin^2 \beta = \sin (a + \beta) \cdot \sin (a - \beta)$. 604. $\cos^2 a - \cos^2 \beta = -\sin(a + \beta) \cdot \sin(a - \beta)$. 605. $\cos^2 a - \sin^2 \beta = \cos (a + \beta) \cdot \cos (a - \beta)$. **606.** $\sin xi = \frac{1}{2}i(e^x - e^{-x}) = i \sinh x.$ 607. $\cos xi = \frac{1}{2}(e^x + e^{-x}) = \cosh x.$ 608. $\tan xi = \frac{i(e^x - e^{-x})}{e^x + e^{-x}} = i \tanh x.$ **609.** $e^{x+yi} = e^x \cos y + i e^x \sin y$. 610. $a^{x+yi} = a^x \cos(y \cdot \log a) + ia^x \sin(y \cdot \log a)$. **611.** $(\cos \theta \pm i \cdot \sin \theta)^n = \cos n\theta \pm i \cdot \sin n\theta$. 612. $\sin x = -\frac{1}{2}i(e^{xi} - e^{-xi}).$ 613. $\cos x = \frac{1}{2} (e^{xi} + e^{-xi}).$
- 614. $\tan x = -i \frac{e^{2x} 1}{e^{2x} + 1}$.
- 615. $\sin (x \pm yi) = \sin x \cos yi \pm \cos x \sin yi$ = $\sin x \cosh y \pm i \cos x \sinh y$.

616. $\cos (x \pm yi) = \cos x \cos yi \mp \sin x \sin yi$ = $\cos x \cosh y \mp i \sin x \sinh y$.

76

In any plane triangle,

617. $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 618. $a^2 = b^2 + c^2 - 2bc \cos A$. 619. $\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} = \frac{\cot \frac{1}{2}C}{\tan \frac{1}{2}(A-B)}$ 620. $\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{bc}}$, where 2s = a+b+c. 621. $\cos \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}$. 622. $\tan \frac{1}{2}A = \sqrt{\frac{s(s-a)}{bc}}$. 623. Area $= \frac{1}{2}bc \sin A = \sqrt{s(s-a)(s-b)(s-c)}$.

In any spherical triangle,

624.
$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$$

625.
$$\cos a = \cos b \cos c + \sin b \sin c \cos A.$$

626.
$$-\cos A = \cos B \cos C - \sin B \sin C \cos a.$$

627.
$$\sin a \operatorname{ctn} b = \sin C \operatorname{ctn} B + \cos a \cos C.$$

628.
$$\cos \frac{1}{2} A = \sqrt{\frac{\sin s \cdot \sin (s - a)}{\sin b \cdot \sin c}}$$

629.
$$\sin \frac{1}{2} A = \sqrt{\frac{\sin (s - b) \cdot \sin (s - c)}{\sin b \cdot \sin c}}$$

630.
$$\tan \frac{1}{2} A = \sqrt{\frac{\sin (s - b) \cdot \sin (s - c)}{\sin s \cdot \sin (s - a)}}$$

631.
$$\cos \frac{1}{2}a = \sqrt{\frac{\cos(S-B) \cdot \cos(S-C)}{\sin B \cdot \sin C}}$$
.

632.
$$\sin \frac{1}{2} a = \sqrt{\frac{-\cos S \cdot \cos (S - A)}{\sin B \sin C}}.$$

633.
$$\tan \frac{1}{2}a = \sqrt{\frac{-\cos S \cdot \cos (S - A)}{\cos (S - B) \cdot \cos (S - C)}}$$
.
 $2s = a + b + c$. $2S = A + B + C$.

634.
$$\cos \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}c} \sin \frac{1}{2}C.$$

635.
$$\cos \frac{1}{2}(A-B) = \frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}c} \sin \frac{1}{2}C.$$

636.
$$\sin \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}c} \cos \frac{1}{2}C.$$

637.
$$\sin \frac{1}{2}(A-B) = \frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}c} \cos \frac{1}{2}C.$$

638.
$$\tan \frac{1}{2}(A+B) = \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \operatorname{ctn} \frac{1}{2}C.$$

639.
$$\tan \frac{1}{2}(A-B) = \frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \operatorname{ctn} \frac{1}{2}C.$$

640.
$$\tan \frac{1}{2}(a+b) = \frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)} \tan \frac{1}{2}c.$$

641.
$$\tan \frac{1}{2}(a-b) = \frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)} \tan \frac{1}{2}c.$$

642.
$$\frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}(a-b)} = \frac{\cot \frac{1}{2}C}{\tan \frac{1}{2}(A+B)}.$$

Digitized by Google

•

1 ... s

In interpreting equations which involve logarithmic and anti-trigonometric functions, it is necessary to remember that these functions are multiple valued. To save space the formulas on this page and the next are printed in contracted form.

643.
$$\sin^{-1}x = \cos^{-1}\sqrt{1-x^2} = \tan^{-1}\frac{x}{\sqrt{1-x^2}} = \sec^{-1}\frac{1}{\sqrt{1-x^2}}$$

 $= \csc^{-1}\frac{1}{x} = 2\sin^{-1}[\frac{1}{2} - \frac{1}{2}\sqrt{1-x^2}]^{\frac{1}{2}}$
 $= \frac{1}{2}\sin^{-1}(2x\sqrt{1-x^2}) = 2\tan^{-1}\left[\frac{1-\sqrt{1-x^2}}{x}\right]$
 $= \frac{1}{2}\tan^{-1}\left[\frac{2x\sqrt{1-x^2}}{1-2x^2}\right] = \frac{1}{2}\pi - \cos^{-1}x$
 $= \frac{1}{2}\pi - \sin^{-1}\sqrt{1-x^2} = -\sin^{-1}(-x)$
 $= \cot^{-1}\frac{\sqrt{1-x^2}}{x} = (2n+\frac{1}{2})\pi - i\log(x+\sqrt{x^2-1})$
 $= \frac{1}{2}\pi + \frac{1}{2}\sin^{-1}(2x^2-1) = \frac{1}{2}\cos^{-1}(1-2x^2).$
644. $\cos^{-1}x = \sin^{-1}\sqrt{1-x^2} = \tan^{-1}\frac{\sqrt{1-x^2}}{x} = \sec^{-1}\frac{1}{x}$
 $= \frac{1}{2}\pi - \sin^{-1}x = 2\cos^{-1}\sqrt{\frac{1+x}{2}}$

$$= \frac{1}{2} \cos^{-1}(2x^{2} - 1)$$

$$= 2 \tan^{-1} \sqrt{\frac{1 - x}{1 + x}} = \frac{1}{2} \tan^{-1} \left[\frac{2x \sqrt{1 - x^{2}}}{2x^{2} - 1} \right]$$

$$= \csc^{-1} \frac{1}{\sqrt{1 - x^{2}}} = \pi - \cos^{-1}(-x)$$

$$= \cot^{-1} \frac{x}{\sqrt{1 - x^{2}}}$$

$$= i \log (x + \sqrt{x^{2} - 1}) = \pi - i \log (\sqrt{x^{2} - 1} - x)$$

79

645.
$$\tan^{-1}x = \sin^{-1}\frac{x}{\sqrt{1+x^2}} = \cos^{-1}\frac{1}{\sqrt{1+x^2}} = \frac{1}{2}\sin^{-1}\frac{2x}{1+x^3}$$

 $= \operatorname{ctn}^{-1}\frac{1}{x} = \frac{1}{2}\pi - \operatorname{ctn}^{-1}x = \operatorname{sec}^{-1}\sqrt{1+x^2}$
 $= \frac{1}{2}\pi - \tan^{-1}\frac{1}{x}$
 $= \operatorname{csc}^{-1}\frac{\sqrt{1+x^2}}{x} = \frac{1}{2}\cos^{-1}\left[\frac{1-x^2}{1+x^2}\right]$
 $= 2\cos^{-1}\left[\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}\right]^{\frac{1}{2}} = 2\sin^{-1}\left[\frac{\sqrt{1+x^2}-1}{2\sqrt{1+x^2}}\right]^{\frac{1}{2}}$
 $= \frac{1}{2}\tan^{-1}\frac{2x}{1-x^2} = 2\tan^{-1}\left[\frac{\sqrt{1+x^2}-1}{x}\right]$
 $= -\tan^{-1}c + \tan^{-1}\left[\frac{x+c}{1-cx}\right] = -\tan^{-1}(-x)$
 $= \frac{1}{2}i\log\frac{1-xi}{1+xi} = \frac{1}{2}i\log\frac{i+x}{i-x}$
 $= -\frac{1}{2}i\log\frac{1+xi}{1-xi}$.

646.
$$\sin^{-1}x \pm \sin^{-1}y = \sin^{-1}[x\sqrt{1-y^2} \pm y\sqrt{1-x^2}].$$

647. $\cos^{-1}x \pm \cos^{-1}y = \cos^{-1}[xy \pm \sqrt{(1-x^2)(1-y^2)}].$
648. $\tan^{-1}x \pm \tan^{-1}y = \tan^{-1}\left[\frac{x \pm y}{1 \pm xy}\right].$
649. $\sin^{-1}x \pm \cos^{-1}y = \sin^{-1}[xy \pm \sqrt{(1-x^2)(1-y^2)}]$
 $= \cos^{-1}[y\sqrt{1-x^2} \pm x\sqrt{1-y^2}].$
650. $\tan^{-1}x \pm \operatorname{ctn}^{-1}y = \tan^{-1}\left[\frac{xy \pm 1}{y \pm x}\right] = \operatorname{ctn}^{-1}\left[\frac{y \pm x}{xy \pm 1}\right].$
651. $\log(x + yi) = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}(y/x).$

B. — HYPERBOLIC FUNCTIONS.
652.
$$\sinh x = \frac{1}{2} (e^x - e^{-x}) = -\sinh (-x) = -i \sin (ix) = (\operatorname{csch} x)^{-1} = 2 \tanh \frac{1}{2} x + (1 - \tanh^2 \frac{1}{2} x).$$

653. $\cosh x = \frac{1}{2} (e^x + e^{-x}) = \cosh (-x) = \cos (ix) = (\operatorname{sech} x)^{-1} = (1 + \tanh^2 \frac{1}{2} x) + (1 - \tanh^2 \frac{1}{2} x).$
654. $\tanh x = (e^x - e^{-x}) + (e^x + e^{-x}) = -\tanh (-x) = -i \tan (ix) = (\operatorname{ctnh} x)^{-1} = \sinh x + \cosh x.$
655. $\cosh xi = \cos x.$
656. $\sinh xi = i \sin x.$
657. $\cosh^2 x - \sinh^2 x = 1.$
658. $1 - \tanh^2 x = \operatorname{sech}^2 x.$
660. $\sinh (x \pm y) = \sinh x \cdot \cosh y \pm \cosh x \cdot \sinh y.$
661. $\cosh (x \pm y) = \cosh x \cdot \cosh y \pm \sinh x \cdot \sinh y.$
662. $\tanh (x \pm y) = (\tanh x \pm \tanh y) + (1 \pm \tanh x \cdot \tanh y).$
663. $\sinh (2x) = 2 \sinh x \cosh x.$
664. $\cosh (2x) = \cosh^2 x + \sinh^2 y = 2 \cosh^2 x - 1 = 1 + 2 \sinh^2 x.$
665. $\tanh (\frac{1}{2} x) = \sqrt{\frac{1}{2} (\cosh x - 1)}.$
667. $\cosh (\frac{1}{2} x) = \sqrt{\frac{1}{2} (\cosh x - 1)}.$
668. $\tanh (\frac{1}{2} x) = \sqrt{\frac{1}{2} (\cosh x - 1)}.$
669. $\sinh x + \sinh y = 2 \sinh \frac{1}{2} (x + y) \cdot \cosh \frac{1}{2} (x - y).$
670. $\sinh x - \sinh y = 2 \cosh \frac{1}{2} (x + y) \cdot \sinh \frac{1}{2} (x - y).$

81

- 671. $\cosh x + \cosh y = 2 \cosh \frac{1}{2} (x + y) \cdot \cosh \frac{1}{2} (x y).$
- 672. $\cosh x \cosh y = 2 \sinh \frac{1}{2} (x + y) \cdot \sinh \frac{1}{2} (x y).$
- 673. $d \sinh x = \cosh x \cdot dx$.
- 674. $d \cosh x = \sinh x \cdot dx$.
- 675. $d \tanh x = \operatorname{sech}^{s} x \cdot dx$.
 - 676. $d \operatorname{ctnh} x = -\operatorname{csch}^2 x \cdot dx$.
- 677. $d \operatorname{sech} x = -\operatorname{sech} x \cdot \tanh x \cdot dx$.
- 678. $d \operatorname{csch} x = -\operatorname{csch} x \cdot \operatorname{ctnh} x \cdot dx$.

679.
$$\sinh^{-1}x = \log(x + \sqrt{x^2 + 1}) = \int \frac{dx}{\sqrt{x^2 + 1}}$$

= $\cosh^{-1}\sqrt{x^2 + 1}$.

680.
$$\cosh^{-1}x = \log(x + \sqrt{x^2 - 1}) = \int \frac{dx}{\sqrt{x^2 - 1}}$$

= $\sinh^{-1}\sqrt{x^2 - 1}$.

681. $\tanh^{-1}x = \frac{1}{2}\log(1+x) - \frac{1}{2}\log(1-x) = \int \frac{dx}{1-x^2}$ 682. $\tanh^{-1}x = \frac{1}{2}\log(1+x) - \frac{1}{2}\log(x-1) = \int \frac{dx}{1-x^2}$

683. sech⁻¹ $x = \log\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1}\right) = -\int \frac{dx}{x\sqrt{1 - x^2}}$.

684.
$$\operatorname{csch}^{-1} x = \log\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1}\right) = -\int \frac{dx}{x\sqrt{x^2 + 1}}$$

685.
$$d \sinh^{-1} x = \frac{dx}{\sqrt{1+x^2}}$$

686. $d \cosh^{-1} x = \frac{dx}{\sqrt{x^2 - 1}}$.

687. $d \tanh^{-1} x = \frac{dx}{1-x^2}$. 688. $d \tanh^{-1} x = -\frac{dx}{x^2-1}$. 689. $d \operatorname{sech}^{-1} x = -\frac{dx}{x\sqrt{1-x^2}}$. 690. $d \operatorname{csch}^{-1} x = -\frac{dx}{x\sqrt{x^2+1}}$. If *m* is an integer,

691. $\sinh (m\pi i) = 0.$ 692. $\cosh (m\pi i) = \cos m\pi = (-1)^m.$ 693. $\tanh (m\pi i) = 0.$ 694. $\sinh (x + m\pi i) = (-1)^m \sinh x.$ 695. $\cosh (x + m\pi i) = (-1)^m \cosh (x).$ 696. $\sinh (2m+1) \frac{1}{2}\pi i = i \sin (2m+1) \frac{1}{2}\pi = \pm i.$ 697. $\cosh (2m+1) \frac{1}{2}\pi i = 0.$ 698. $\sinh \left(\frac{\pi i}{2} \pm x\right) = i \cosh x.$ 799. $\cosh \left(\frac{\pi i}{2} \pm x\right) = i \cosh x.$ 700. $\sinh u = \tan gd u.$ 701. $\cosh u = \sec gd u.$ 702. $\tanh u = \sin gd u.$ 703. $\tanh \frac{1}{2}u = \tan \frac{1}{2}gd u.$ 704. $u = \log \tan (\frac{1}{4}\pi + \frac{1}{3}gd u).$

C. — ELLIPTIC FUNCTIONS.

If $u \equiv F(\phi, k) \equiv \int_0^x \frac{dz}{\sqrt{(1-z^2)(1-k^2z^3)}} \equiv \int_0^\phi \frac{d\theta}{\sqrt{1-k^2\sin^2\theta}}$ where k < 1, and $x \equiv \sin \phi$, ϕ is called the *amplitude* of u and is written am $(u, \mod k)$, or, more simply, am u; $x \equiv \sin \phi \equiv \operatorname{sn} u$, $\sqrt{1-x^2} \equiv \cos \phi \equiv \operatorname{cn} u, \ \sqrt{1-k^2x^2} \equiv \Delta \phi \equiv \Delta n \ u \equiv \operatorname{dn} u,$ $K \equiv F(\frac{1}{2}\pi, k), \qquad K' \equiv F(\frac{1}{2}\pi, k').$ Hence, $\operatorname{am}(0) = 0$, $\operatorname{sn}(0) = 0$, $\operatorname{cn}(0) = 1$, $\operatorname{dn}(0) = 1$, $\operatorname{am}(-u) = -\operatorname{am} u, \qquad \operatorname{sn}(-u) = -\operatorname{sn} u,$ $\mathrm{dn}\,(-u)=\mathrm{dn}\,u.$ $\operatorname{cn}\left(-u\right) = \operatorname{cn} u,$ 705. $\operatorname{sn}^2 u + \operatorname{cn}^2 u = 1$. **706.** $dn^2 u + k^2 sn^2 u = 1$. 707. $dn^3 u - k^2 cn^3 u = 1 - k^2 = k^2$ **708.** sn $2u = \frac{2 \operatorname{sn} u \cdot \operatorname{cn} u \operatorname{dn} u}{1 - k^2 \operatorname{sn}^4 u}$. **709.** cn $2u = \frac{\operatorname{cn}^2 u - \operatorname{sn}^2 u \cdot \operatorname{dn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{1 - 2 \operatorname{sn}^2 u + k^2 \operatorname{sn}^4 u}{1 - k^2 \operatorname{sn}^4 u}$ $=1-\frac{2 \operatorname{sn}^{2} u \cdot \operatorname{dn}^{2} u}{1-k^{2} \operatorname{sn}^{4} u}=\frac{2 \operatorname{cn}^{2} u}{1-k^{2} \operatorname{sn}^{4} u}-1.$ **710.** dn 2 $u = \frac{\mathrm{dn}^2 u - k^2 \operatorname{sn}^2 u \cdot \operatorname{cn}^2 u}{1 - k^2 \operatorname{sn}^4 u} = \frac{1 - 2 k^2 \operatorname{sn}^2 u + k^2 \operatorname{sn}^4 u}{1 - k^2 \operatorname{sn}^4 u}$ $=1-\frac{2 k^{2} \operatorname{sn}^{2} u \cdot \operatorname{cn}^{2} u}{1-k^{2} \operatorname{sn}^{4} u}=\frac{2 \operatorname{dn}^{2} u}{1-k^{2} \operatorname{sn}^{4} u}-1.$ 711. $\operatorname{sn}^{2}\left(\frac{u}{2}\right) = \frac{1 - \operatorname{cn} u}{1 + \operatorname{dn} u} = \frac{1 - \operatorname{dn} u}{k^{2}(1 + \operatorname{cn} u)} = \frac{\operatorname{dn} u - \operatorname{cn} u}{k^{2} + \operatorname{dn} u - k^{2} \operatorname{cn} u}$ **712.** $\operatorname{cn}^{2}\left(\frac{u}{2}\right) = \frac{\operatorname{dn} u + \operatorname{cn} u}{1 + \operatorname{dn} u} = \frac{k^{2} \operatorname{cn} u - k^{\prime 2} + \operatorname{dn} u}{k^{2}(1 + \operatorname{cn} u)}$ $=\frac{k^{\prime 2}(1+\mathrm{cn}\ u)}{k^{\prime 2}+\mathrm{dn}\ u-k^{2}\,\mathrm{cn}\ u}$

84

713.
$$dn^{2}\left(\frac{u}{2}\right) = \frac{k^{2} + dn \ u + k^{2} \ cn \ u}{1 + dn \ u} = \frac{k^{2} \ (cn \ u + dn \ u)}{k^{2} (1 + cn \ u)}$$
$$= \frac{k^{\prime 2} (1 + dn \ u)}{k^{\prime 2} + dn \ u - k^{2} \ cn \ u}$$

If, moreover, $v = \int_0^y \frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}}$,

714.
$$\operatorname{sn}^2 u - \operatorname{sn}^2 v = \operatorname{cn}^2 v - \operatorname{cn}^2 u$$
.
 $\operatorname{sn} u \cdot \operatorname{cn} v \cdot \operatorname{dn} v \pm \operatorname{cn} u \cdot$

715.
$$\operatorname{sn}(u \pm v) = \frac{\operatorname{sn} u \cdot \operatorname{cn} v \cdot \operatorname{dn} v \pm \operatorname{cn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$
.

716.
$$\operatorname{cn}(u \pm v) = \frac{\operatorname{cn} u \cdot \operatorname{cn} v \mp \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}{1 - k^3 \operatorname{sn}^3 u \cdot \operatorname{sn}^3 v}$$

= $\operatorname{cn} u \cdot \operatorname{cn} v \mp \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} (u \pm v).$

717.
$$dn (u \pm v) = \frac{dn \ u \cdot dn \ v \mp k^2 \ sn \ u \cdot sn \ v \cdot cn \ u \cdot cn \ v}{1 - k^2 \ sn^2 \ u \cdot sn^2 \ v}$$
$$= dn \ u \cdot dn \ v \mp k^2 \ sn \ u \cdot sn \ v \cdot cn \ (u \pm v).$$

718.
$$\operatorname{tn}(u \pm v) = \frac{\operatorname{tn} u \cdot \operatorname{dn} v \pm \operatorname{tn} v \cdot \operatorname{dn} u}{1 \mp \operatorname{tn} u \cdot \operatorname{tn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}$$

719.
$$\operatorname{sn}(u+v) + \operatorname{sn}(u-v) = \frac{2 \operatorname{sn} u \cdot \operatorname{cn} v \cdot \operatorname{dn} v}{1-k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

720.
$$\operatorname{sn}(u+v) - \operatorname{sn}(u-v) = \frac{2 \operatorname{sn} v \cdot \operatorname{cn} u \cdot \operatorname{dn} u}{1-k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

721.
$$\operatorname{cn}(u+v) + \operatorname{cn}(u-v) = \frac{2 \operatorname{cn} u \cdot \operatorname{cn} v}{1-k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

722.
$$\operatorname{cn}(u+v) - \operatorname{cn}(u-v) = -\frac{2 \operatorname{sn} u \cdot \operatorname{sn} v \cdot \operatorname{dn} u \cdot \operatorname{dn} v}{1-k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

723.
$$dn(u + v) + dn(u - v) = \frac{2 dn u dn v}{1 - k^2 sn^2 u sn^2 v}$$

724.
$$dn (u + v) - dn (u - v) = -\frac{2 k^2 sn u \cdot sn v \cdot cn u \cdot cn v}{1 - k^2 sn^2 u \cdot sn^2 v}$$

725.
$$sn (u + v) \cdot sn (u - v) = \frac{sn^2 u - sn^2 v}{1 - k^2 sn^2 u \cdot sn^2 v}$$

$$= \frac{cn^2 v + sn^2 u \cdot dn^2 v}{1 - k^2 sn^2 u \cdot sn^2 v} - 1 = \frac{1}{k^2} \left[\frac{dn^2 v + k^2 sn^2 u \cdot cn^2 v}{1 - k^2 sn^2 u \cdot sn^2 v} - 1 \right]$$

726.
$$cn (u + v) \cdot cn (u - v) = \frac{cn^2 u - sn^2 v + k^2 sn^2 u \cdot sn^2 v}{1 - k^2 sn^2 u \cdot sn^2 v}$$

$$= \frac{cn^2 u + cn^2 v}{1 - k^2 sn^2 u \cdot sn^2 v} - 1 = 1 - \frac{sn^2 u \cdot dn^2 v + sn^2 v \cdot dn^2 u}{1 - k^2 sn^2 u \cdot sn^2 v}$$

727.
$$dn (u + v) \cdot dn (u - v)$$

$$= \frac{1 - k^2 \operatorname{sn}^2 u - k^2 \operatorname{sn}^2 v + k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$
$$= \frac{\operatorname{dn}^2 u + \operatorname{dn}^2 v}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v} - 1.$$

728. $\operatorname{sn}(u \pm v) \operatorname{cn}(u \mp v) = \frac{\operatorname{sn} u \cdot \operatorname{cn} u \cdot \operatorname{dn} v \pm \operatorname{sn} v \cdot \operatorname{cn} v \cdot \operatorname{dn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$

729.
$$\operatorname{sn}(u \pm v) \operatorname{dn}(u \mp v) = \frac{\operatorname{sn} u \cdot \operatorname{dn} u \cdot \operatorname{cn} v \pm \operatorname{sn} v \cdot \operatorname{dn} v \cdot \operatorname{cn} u}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

730.
$$\operatorname{cn}(u \pm v) \operatorname{dn}(u \mp v) = \frac{\operatorname{cn} u \cdot \operatorname{dn} u \cdot \operatorname{cn} v \cdot \operatorname{dn} v \mp k^{\prime 2} \operatorname{sn} u \cdot \operatorname{sn} v}{1 - k^{2} \operatorname{sn}^{2} u \cdot \operatorname{sn}^{2} v}.$$

731.
$$[1 \pm \operatorname{sn}(u+v)][1 \pm \operatorname{sn}(u-v)] = \frac{(\operatorname{cn} v \pm \operatorname{sn} u \cdot \operatorname{dn} v)^2}{1 - k^2 \operatorname{sn}^2 u \cdot \operatorname{sn}^2 v}$$

732.
$$\operatorname{sn}(ui, k) = i \operatorname{sn}(u, k') / \operatorname{cn}(u, k').$$

733. $\operatorname{cn}(ui, k) = 1/\operatorname{cn}(u, k').$

734.
$$dn(ui, k) = dn(u, k')/cn(u, k').$$

735.
$$\frac{d \ am \ u}{du} = dn \ u$$
.
736. $\frac{d \ sn \ u}{du} = cn \ u \cdot dn \ u$.
737. $\frac{d \ cn \ u}{du} = -sn \ u \cdot dn \ u$.
738. $\frac{d \ dn \ u}{du} = -s^2 \ sn \ u \cdot cn \ u$.
739. $\frac{d^2 \ sn \ u}{du^2} = 2 \ k^2 \ sn^3 \ u - (1 + k^3) \ sn \ u$.
740. $\frac{d^2 \ cn \ u}{du^2} = (2 \ k^2 - 1) \ cn \ u - 2 \ k^2 \ cn^3 \ u$.
741. $\frac{d^2 \ dn \ u}{du^2} = (2 \ k^2 - 1) \ cn \ u - 2 \ dn^3 \ u$.
742. $sn \ (u \pm K) = \pm \ cn \ u \ dn \ u$, $sn \ (u \pm 2 \ K) = -sn \ u$,
 $sn \ (u \pm 3 \ K) = \pm \ cn \ u \ dn \ u$, $sn \ (u \pm 4 \ K) = sn \ u$,
 $sn \ (u \pm 3 \ K) = \pm \ cn \ u \ dn \ u$, $sn \ (u \pm 4 \ K) = sn \ u$,
 $sn \ (u \pm 3 \ K) = \pm \ k' \ sn \ u \ dn \ u$, $cn \ (u \pm 2 \ K) = -cn \ u$,
 $cn \ (u \pm K) = \pm \ k' \ sn \ u \ dn \ u$, $cn \ (u \pm 4 \ K) = cn \ u$,
 $cn \ (u \pm K) = \pm \ k' \ sn \ u \ dn \ u$, $cn \ (u \pm 4 \ K) = cn \ u$,
 $cn \ (u \pm K) = -i \ dn \ u \ k \ sn \ u$, and, if $m \ and \ n \ are \ integer
 $cn \ (u \pm K) = -i \ dn \ u \ k \ sn \ u$, and, if $m \ and \ n \ are \ integer$
 $cn \ (u \pm K) = -k' \ dn \ u$, $dn \ (u \pm K) = -k' \ dn \ u$, $dn \ (u \pm 2 \ K) = -n \ u$.$

 $\operatorname{cn}\left(u\pm 2\ K\right)=-\operatorname{cn} u,$ 74 , $\operatorname{cn}(u \pm 4 K) = \operatorname{cn} u$, and, if *m* and *n* are integers, $()^{m+n}$ cn u.

cn⁸ u.

74 $2 K) = \mathrm{dn} u,$ nd, if *m* and *n* are integers, $dn(u+2mK+2nK'i) = (-1)^{n} dn u.$

D. - Series and Products.

[The expression in brackets attached to an infinite series shows values of the variable which lie within the interval of convergence. If a series is convergent for all finite values of x, the expression $[x^2 < \infty]$ is used.]

$$\begin{aligned} \mathbf{745.} \quad (a+b)^{n} &= a^{n} + na^{n-1}b \\ &+ \frac{n(n-1)}{2!} a^{n-2}b^{2} + \dots + \frac{n! a^{n-k}b^{k}}{(n-k)! k!} + \dots [b^{2} < a^{2}.] \\ \mathbf{746.} \quad (a-bx)^{-1} &= \frac{1}{a} \left[1 + \frac{bx}{a} + \frac{b^{2}x^{2}}{a^{2}} + \frac{b^{3}x^{3}}{a^{3}} + \dots \right] \cdot [b^{2}x^{2} < a^{2}.] \\ \mathbf{747.} \quad (1 \pm x)^{n} &= 1 \pm nx + \frac{n(n-1)}{2!} x^{2} \\ &\pm \frac{n(n-1)(n-2)x^{3}}{3!} + \dots + \frac{(\pm 1)^{k} n! x^{k}}{(n-k)! k!} + \dots \\ & [x^{2} < 1.] \\ \mathbf{748.} \quad (1 \pm x)^{-n} &= 1 \mp nx + \frac{n(n+1)}{2!} x^{2} \\ &\pm \frac{n(n+1)(n+2)x^{3}}{3!} + \dots (\mp)^{k} \frac{(n+k-1)! x^{k}}{(n-1)! k!} + \dots \\ & [x^{2} < 1.] \\ \mathbf{749.} \quad (1 \pm x)^{4} &= 1 \pm \frac{1}{2}x - \frac{1 \cdot 1}{2 \cdot 4} x^{2} \pm \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3} \\ &- \frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4} \pm \dots \\ & [x^{2} < 1.] \\ \mathbf{750.} \quad (1 \pm x)^{-4} &= 1 \mp \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4} x^{2} \mp \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{3} \\ &+ \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8} x^{4} \mp \dots \\ & [x^{2} < 1.] \\ \mathbf{751.} \quad (1 \pm x)^{\frac{1}{2}} &= 1 \pm \frac{1}{2}x - \frac{1 \cdot 2}{2 \cdot 2} x^{2} \pm \frac{1 \cdot 2 \cdot 5}{2 \cdot 4 \cdot 6} x^{3} \\ \end{aligned}$$

$$(1 \pm x)^{\frac{1}{2}} = 1 \pm \frac{1}{8}x - \frac{1 \cdot 2}{3 \cdot 6}x^2 \pm \frac{1 \cdot 2 \cdot 3}{3 \cdot 6 \cdot 9}x^3 - \frac{1 \cdot 2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9 \cdot 12}x^4 \pm \cdots \qquad [x^2 < 1.]$$

752.
$$(1 \pm x)^{-\frac{1}{2}} = 1 \mp \frac{1}{8}x + \frac{1 \cdot 4}{3 \cdot 6}x^2 \mp \frac{1 \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9}x^3 + \frac{1 \cdot 4 \cdot 7 \cdot 10}{3 \cdot 6 \cdot 9 \cdot 12}x^4 \mp \cdots \qquad [x^2 < 1.]^{-\frac{1}{2}}$$

753.
$$(1 \pm x^2)^{\frac{1}{2}} = 1 \pm \frac{1}{2}x^2 - \frac{x^4}{2 \cdot 4} \pm \frac{1 \cdot 3 x^6}{2 \cdot 4 \cdot 6} - \frac{1 \cdot 3 \cdot 5 x^8}{2 \cdot 4 \cdot 6 \cdot 8} \pm \cdots$$

 $[x^2 < 1.]$
754. $(1 \pm x^2)^{-\frac{1}{2}} = 1 \pm \frac{1}{2}x^2 + \frac{1 \cdot 3}{2 \cdot 4}x^4 \pm \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^6 + \cdots$
 $[x^2 < 1.]$
755. $(1 \pm x)^{-1} = 1 \pm x + x^2 \pm x^3 + x^4 \pm x^5 + \cdots$ $[x^2 < 1.]$

756.
$$(1 \pm x)^{\frac{3}{2}} = 1 \pm \frac{3}{2}x + \frac{3 \cdot 1}{2 \cdot 4}x^2 \pm \frac{3 \cdot 1 \cdot 1}{2 \cdot 4 \cdot 6}x^3 + \frac{3 \cdot 1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6 \cdot 8}x^4 \pm \frac{3 \cdot 1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10}x^5 + \cdots$$
 $[x^2 < 1.]$

757.
$$(1 \pm x)^{-\frac{3}{2}} = 1 \pm \frac{3}{2}x + \frac{3 \cdot 5}{2 \cdot 4}x^2 \pm \frac{3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6}x^3 + \cdots [x^2 < 1.]$$

758.
$$(1 \pm x)^{-2} = 1 \pm 2x + 3x^2 \pm 4x^3 + 5x^4 \pm 6x^5 + \cdots$$

[$x^2 < 1$.]

759.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 $[x^2 < \infty.]$

760.
$$a^x = 1 + x \log a + \frac{(x \log a)^2}{2!} + \frac{(x \log a)^3}{3!} + \cdots [x^2 < \infty.]$$

761.
$$\frac{1}{2}(e^x + e^{-x}) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$
 $[x^2 < \infty.]$

762.
$$\frac{1}{2}(e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$
 $[x^2 < \infty.]$

763.
$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots$$
 $[x^2 < \infty.]$

.

A series of numbers, B_1 , B_2 , $B_3 \cdots$, of odd and even orders, which appear in the developments of many functions, may be computed by means of the equations,

$$B_{2n} - \frac{2n(2n-1)}{2!} B_{2n-2}$$

$$+ \frac{2n(2n-1)(2n-2)(2n-3)}{4!} B_{2n-4} - \cdots (-1)^n = 0.$$

$$\frac{2^{2n}(2^{2n}-1)}{2n} B_{2n-1} = (2n-1) B_{2n-2}$$

$$- \frac{(2n-1)(2n-2)(2n-3)}{3!} B_{2n-4} + \cdots (-1)^{n-1} = 0.$$

Whence $B_1 = \frac{1}{6}$, $B_2 = 1$, $B_3 = \frac{1}{30}$, $B_4 = 5$, $B_5 = \frac{1}{22}$, $B_6 = 61$, $B_7 = \frac{1}{30}$, $B_8 = 1385$, $B_9 = \frac{5}{65}$, $B_{10} = 50521$, $B_{11} = \frac{6991}{2730}$, $B_{12} = 2702765$, $B_{13} = \frac{7}{6}$, etc. The B's of odd orders are called Bernoulli's Numbers; those of even orders, Euler's Numbers. What are here denoted by B_{2n-1} and B_{2n} are sometimes represented by B_n and E_n , respectively,

$$\frac{B_{2n-1}}{(2n)!} = \frac{2}{(2^{2n}-1)\pi^{2n}} \left[1 + \frac{1}{3^{2n}} + \frac{1}{5^{2n}} + \frac{1}{7^{2n}} + \cdots \right],$$

$$\frac{B_{2n}}{(2n)!} = \frac{2^{2n+2}}{\pi^{2n+1}} \left[1 - \frac{1}{3^{2n}} + \frac{1}{5^{2n}} - \frac{1}{7^{2n}} + \cdots \right].$$
764.
$$\frac{x}{e^x - 1} = 1 - \frac{x}{2} + \frac{B_1 x^2}{2!} - \frac{B_8 x^4}{4!} + \frac{B_5 x^6}{6!} - \frac{B_7 x^8}{8!} + \cdots \right] \left[x < 2\pi. \right]$$
765. $\log x = (x - 1) - \frac{1}{2} (x - 1)^2 + \frac{1}{8} (x - 1)^8 - \cdots$

766.
$$\log x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x} \right)^2 + \frac{1}{3} \left(\frac{x-1}{x} \right)^3 + \cdots$$
 [$x > \frac{1}{2}$.]

90

•

$$767. \ \log x = 2\left[\frac{x-1}{x+1} + \frac{1}{8}\left(\frac{x-1}{x+1}\right)^3 + \frac{1}{8}\left(\frac{x-1}{x+1}\right)^8 + \cdots\right] \cdot [x > 0.]$$

$$[x > 0.]$$

$$768. \ \log (1+x) = x - \frac{1}{2}x^2 + \frac{1}{8}x^3 - \frac{1}{4}x^4 + \cdots . \qquad [x^2 < 1.]$$

$$769. \ \log \left(\frac{1+x}{1-x}\right) = 2[x + \frac{1}{8}x^3 + \frac{1}{8}x^5 + \frac{1}{7}x^7 + \cdots] \cdot [x^2 < 1.]$$

$$770. \ \log \left(\frac{x+1}{x-1}\right) = 2\left[\frac{1}{x} + \frac{1}{8}\left(\frac{1}{x}\right)^3 + \frac{1}{8}\left(\frac{1}{x}\right)^5 + \cdots\right] \cdot [x^2 > 1.]$$

$$771. \ \log (x + \sqrt{1+x^2}) = x - \frac{1}{6}x^3 + \frac{1}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5 x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots .$$

$$[x^2 < 1.]$$

Series for denary and other logarithms can be obtained from the foregoing developments by aid of the equations,

$$\log_a x = \log_e x \cdot \log_a e, \ \log_e x = \log_a x \cdot \log_e a,$$

 $\log_e(-z) = (2 \ n + 1) \pi i + \log_e z.$

772.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 $[x^2 < \infty.]$

773. $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = 1 - \operatorname{versin} x. \ [x^2 < \infty.]$

774.
$$\tan x = x + \frac{x^3}{3} + \frac{2 x^5}{15} + \frac{17 x^7}{315} + \frac{62 x^9}{2835}$$

 $+ \cdots + \frac{2^{2n} (2^{2n} - 1) B_{2n-1} x^{2n-1}}{(2 n)!} + \cdots \qquad [x^2 < \frac{1}{4} \pi^2]$

775.
$$\operatorname{ctn} x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2 x^5}{945} - \frac{x^7}{4725}$$

 $- \cdots - \frac{B_{2n-1}(2x)^{2n}}{x(2n)!} - \cdots$ $[x^2 < \pi^2]$

91

776.
$$\sec x = 1 + \frac{x^2}{2!} + \frac{5x^4}{4!} + \frac{61x^6}{6!} + \dots + \frac{B_{2n}x^{2n}}{(2n)!} + \dots \left[x^2 < \frac{\pi^2}{4}\right]$$

777. csc
$$x = \frac{1}{x} + \frac{x}{3!} + \frac{7x^3}{3\cdot 5!} + \frac{31x^5}{3\cdot 7!} + \cdots + \frac{2(2^{2n+1}-1)}{(2n+2)!} B_{2n+1}x^{2n+1} + \cdots \qquad [x^2 < \pi^2.]$$

778.
$$\sin^{-1}x = x + \frac{x^3}{6} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \cdots = \frac{1}{2}\pi - \cos^{-1}x.$$
 $[x^2 < 1.]$

779.
$$\tan^{-1}x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \frac{1}{2}\pi - \operatorname{ctn}^{-1}x.$$

[$x^2 < 1.$]

780.
$$\tan^{-1}x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \cdots$$
 [x²>1.]

781.
$$\sec^{-1}x = \frac{\pi}{2} - \frac{1}{x} - \frac{1}{6x^2} - \frac{1 \cdot 3}{2 \cdot 4 \cdot 5x^6} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7x^7} - \cdots$$

= $\frac{1}{2}\pi - \csc^{-1}x$. [x²>1.]

782.
$$\log \sin x = \log x - \frac{1}{6} x^2 - \frac{1}{180} x^4 - \frac{1}{2835} x^6$$

 $- \cdots - \frac{2^{2n-1} B_{2n-1} x^{2n}}{n (2n)!} - \cdots$ $[x^2 < \pi^2]$

783. log cos
$$x = -\frac{1}{2}x^2 - \frac{1}{12}x^4 - \frac{1}{45}x^6 - \frac{1}{25}\frac{7}{20}x^8$$

 $-\cdots - \frac{2^{2n-1}(2^{2n}-1)B_{2n-1}x^{2n}}{n(2n)!} - \cdots \cdot [x^2 < \frac{1}{4}\pi^2.]$

784. log tan
$$x = \log x + \frac{1}{3}x^2 + \frac{7}{90}x^4 + \frac{1}{2}\frac{6}{3}\frac{2}{5}x^6$$

 $+ \cdots + \frac{(2^{2n-1}-1)2^{2n}B_{2n-1}x^{2n}}{n(2n)!} + \cdots [x^2 < \frac{1}{4}\pi^2]$

785.
$$e^{\sin x} = 1 + x + \frac{x^2}{2!} - \frac{3x^4}{4!} - \frac{8x^5}{5!} - \frac{3x^6}{6!} + \frac{56x^7}{7} + \cdots$$

 $[x^2 < \infty.]$

92

•

- **786.** $e^{\cos x} = e\left(1 \frac{x^2}{2!} + \frac{4x^4}{4!} \frac{31x^6}{6!} + \cdots\right)$ $[x^2 < \infty.]$
- **787.** $e^{\tan x} = 1 + x + \frac{x^2}{2!} + \frac{3x^3}{3!} + \frac{9x^4}{4!} + \frac{37x^5}{5!} + \cdots [x^2 < \frac{1}{4}\pi^2.]$

788.
$$e^{\sin^{-1}x} = 1 + x + \frac{x^2}{2!} + \frac{2x^3}{3!} + \frac{5x^4}{4!} + \cdots$$
 [x² < 1.]

789.
$$e^{\tan^{-1}x} = 1 + x + \frac{x^2}{2} - \frac{x^3}{6} - \frac{7x^4}{24} - \cdots$$
 [x² < 1.]

790.
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$
 $[x^2 < \infty.]$

791.
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!} + \cdots$$
 $[x^2 < \infty.]$

792.
$$\tanh x = (2^2 - 1)2^2 B_1 \frac{x}{2!} - (2^4 - 1)2^4 B_3 \frac{x^3}{4!} + \cdots$$

= $\Sigma[(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n-1}x^{2n-1}/(2n)!].$
[$x^2 < \frac{1}{4}\pi^2.$]

793. etnh
$$x = \frac{1}{x} (1 + \Sigma [(-1)^{n-1} 2^{2n} B_{2n-1} x^{2n} / (2n)!]).$$

 $[x^2 < \pi^2.]$

794. sech
$$x = 1 + \Sigma[(-1)^n B_{2n} x^{2n} / (2n)!].$$
 $[x^2 < \frac{1}{4} \pi^2.]$

795.
$$\operatorname{csch} x = \frac{1}{x} + (2-1)2 B_1 \frac{x}{2!} - (2^3 - 1)2 B_3 \frac{x^3}{4!} + \cdots$$

$$= \frac{1}{x} (1 + 2 \Sigma [(-1)^n (2^{2n-1} - 1) B_{2n-1} x^{2n} / (2n)!]).$$
$$[x^2 < \pi^2.]$$

796.
$$\sinh^{-1}x = x - \frac{1}{6}x^3 + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} - \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots [x^2 < 1.]$$

797.
$$\tanh^{-1}x = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots$$
 [x² < 1.]

798.
$$\operatorname{ctnh}^{-1} x = \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \cdots$$
 [x² > 1.]

799.
$$\operatorname{csch}^{-1} x = \frac{1}{x} - \frac{1}{2 \cdot 3 \cdot x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot x^5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7 \cdot x^7} + \cdots$$

[$x^2 > 1$.]

800.
$$\int_0^x e^{-x^2} dx = x - \frac{1}{3}x^3 + \frac{x^5}{5 \cdot 2!} - \frac{x^7}{7 \cdot 3!} + \cdots \qquad [x^2 < \infty.]$$

801.
$$\int_0^x \cos(x^2) \, dx = x - \frac{x^5}{5 \cdot 2!} + \frac{x^9}{9 \cdot 4!} - \frac{x^{13}}{13 \cdot 6!} + \cdots \cdot [x^2 < \infty.]$$

802.
$$\int_0^1 \frac{x^{a-1}dx}{1+x^b} = \frac{1}{a} - \frac{1}{a+b} + \frac{1}{a+2b} - \frac{1}{a+3b} + \cdots$$

803.
$$f(x + h) = f(x) + h \cdot f'(x + \theta h).$$

804. $f(x + h) = f(x) + h \cdot f'(x) + \frac{h^2}{2!}f''(x) + \cdots + \frac{h^n}{n!} \cdot f^n(x + \theta h).$
805. $f(x + h) = f(x) + h \cdot f'(x) + \frac{h^2}{2!}f''(x)$

$$+ h) = f'(x) + h \cdot f''(x) + \frac{1}{2!} f'''(x)$$

$$+ \cdots + \frac{h^n}{(n-1)!} \cdot (1-\theta)^{n-1} \cdot f^n(x+\theta h).$$

806.
$$f(x+h, y+k) = f(x, y) + hf'_x(x+\theta h, y+\theta k)$$
$$+ kf'_y(x+\theta h, y+\theta k).$$

807.
$$f(x+h, y+k) = f(x, y) + \left(h\frac{\partial f(x, y)}{\partial x} + k\frac{\partial f(x, y)}{\partial y}\right) + \frac{1}{2!}\left(h^2\frac{\partial^2 f(x, y)}{\partial x^2} + 2hk\frac{\partial^2 f(x, y)}{\partial x \cdot \partial y} + k^2\frac{\partial^2 f(x, y)}{\partial y^2}\right)$$

94

$$+ \frac{1}{3!} \left(h^{3} \frac{\partial^{3} f(x, y)}{\partial x^{3}} + 3 h^{3} h \frac{\partial^{3} f(x, y)}{\partial y \cdot \partial x^{2}} + 3 h k^{2} \frac{\partial^{3} f(x, y)}{\partial x \cdot \partial y^{3}} \right) + \dots + R_{n}$$

$$= f(x, y) + (hD_{x} + kD_{y})f(x, y) + \frac{1}{2!} (hD_{x} + kD_{y})^{3} f(x, y)$$

$$+ \dots + \frac{1}{(n-1)!} (hD_{x} + kD_{y})^{n-1} f(x, y)$$

$$+ \frac{1}{n!} (hD_{x} + kD_{y})^{n} f(x + \theta h, y + \theta k).$$

$$808. \ 1 = \frac{4}{\pi} \left[\sin \frac{\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} + \frac{1}{3} \sin \frac{5\pi x}{c} + \dots \right] \cdot [0 < x < c.]$$

$$809. \ x = \frac{2c}{\pi} \left[\sin \frac{\pi x}{c} - \frac{1}{2} \sin \frac{2\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} + \frac{1}{5^{2}} \cos \frac{5\pi x}{c} + \dots \right] \cdot [0 < x < c.]$$

$$810. \ x = \frac{c}{2} - \frac{4c}{\pi^{2}} \left[\cos \frac{\pi x}{c} + \frac{1}{3^{2}} \cos \frac{3\pi x}{c} + \frac{1}{5^{2}} \cos \frac{5\pi x}{c} + \dots \right] \cdot [0 < x < c.]$$

$$811. \ x^{2} = \frac{2c^{3}}{\pi^{3}} \left[\left(\frac{\pi^{2}}{1} - \frac{4}{1} \right) \sin \frac{\pi x}{c} - \frac{\pi^{2}}{2} \sin \frac{2\pi x}{c} + \frac{1}{3^{2}} \cos \frac{3\pi x}{c} + \frac{1}{4^{4}} \cos \frac{4\pi x}{c} + \dots \right] \cdot [-c < x < c.]$$

.

813.
$$\log \sin \frac{1}{2} x = -\log 2 - \cos x - \frac{1}{2} \cos 2x - \frac{1}{3} \cos 3x - \cdots$$

 $[0 < x < \frac{1}{2} \pi.]$

814. $\log \cos \frac{1}{2}x = -\log 2 + \cos x - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 3x - \cdots$ $[0 < x < \frac{1}{2}\pi.]$

815.
$$f(x) = \frac{1}{2} b_0 + b_1 \cos \frac{\pi x}{c} + b_2 \cos \frac{2 \pi x}{c} + \cdots$$

 $+ a_1 \sin \frac{\pi x}{c} + a_2 \sin \frac{2 \pi x}{c} + \cdots, [-c < x < c.]$
where $b_m = \frac{1}{c} \int_{-c}^{+c} f(a) \cos \frac{m \pi a}{c} da,$
 $a_m = \frac{1}{c} \int_{-c}^{+c} f(a) \sin \frac{m \pi a}{c} da.$

816.
$$\sin \theta = \theta \left[1 - \left(\frac{\theta}{\pi}\right)^2 \right] \left[1 - \left(\frac{\theta}{2\pi}\right)^2 \right] \left[1 - \left(\frac{\theta}{3\pi}\right)^2 \right] \cdots \left[\theta^2 < \infty \right]$$

817.
$$\cos\theta = \left[1 - \left(\frac{2\theta}{\pi}\right)^2\right] \left[1 - \left(\frac{2\theta}{3\pi}\right)^2\right] \left[1 - \left(\frac{2\theta}{5\pi}\right)^2\right] \cdots$$

 $\left[\theta^2 < \infty.\right]$

818.
$$\frac{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \cdots (2 m)^{3} (2 m + 2)}{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \cdots (2 m + 1)^{2}} > \frac{\pi}{2}$$
$$> \frac{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot \cdots (2 m)^{2} (2 m + 1)}{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot \cdots (2 m + 1)^{2}} \cdot$$

819.
$$J_{n}(x) = \frac{x^{n}}{2^{n} n!} \left\{ 1 - \frac{x^{2}}{2(2 n + 2)} + \frac{x^{4}}{2 \cdot 4 (2 n + 2) (2 n + 4)} - \frac{x^{6}}{2 \cdot 4 \cdot 6 (2 n + 2) (2 n + 4) (2 n + 6)} + \cdots \right\} \cdot$$

E. — DERIVATIVES. 820. $\frac{d(au)}{dx} = \frac{a\,du}{dx}$. 821. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ 822. $\frac{d(uv)}{da} = v \frac{du}{da} + u \frac{dv}{da}$ 823. $\frac{d\left(\frac{u}{v}\right)}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v}$ 824. $\frac{df(u)}{dx} = \frac{df(u)}{du} \cdot \frac{du}{dx}$ 825. $\frac{d^2 f(u)}{dx^2} = \frac{df}{du} \cdot \frac{d^2 u}{dx^2} + \frac{d^2 f}{du^2} \cdot \frac{du^2}{dx^2}$ 826. $\frac{dx^n}{dx} = nx^{n-1}.$ 827. $\frac{de^x}{dx} = e^x$. 828. $\frac{da^u}{dx} = a^u \cdot \frac{du}{dx} \cdot \log_e a.$ 829. $\frac{dx^x}{dx} = x^x (1 + \log_e x).$ 830. $\frac{d(\log_a x)}{dx} = \frac{1}{x \cdot \log_a a} = \frac{\log_a e}{x}$ 831. $\frac{d \sin x}{dx} = \cos x$. 832. $\frac{d\cos x}{dx} = -\sin x.$

- $833. \quad \frac{d \tan x}{dx} = \sec^2 x.$
- $834. \quad \frac{d \, \operatorname{ctn} x}{dx} = \, \operatorname{csc}^2 x.$
- 835. $\frac{d \sec x}{dx} = \tan x \cdot \sec x$.
- 836. $\frac{d \csc x}{dx} = \operatorname{ctn} x \cdot \csc x.$
- 837. $\frac{d \sin^{-1} x}{dx} = \frac{1}{\sqrt{1-x^2}}$.
- 838. $\frac{d \cos^{-1} x}{dx} = \frac{-1}{\sqrt{1-x^2}}$
- 839. $\frac{d \tan^{-1} x}{dx} = \frac{1}{1+x^2}$.
- 840. $\frac{d \operatorname{ctn}^{-1} x}{dx} = -\frac{1}{1+x^2}$
- 841. $\frac{d \sec^{-1} x}{dx} = \frac{1}{x\sqrt{x^2-1}}$
- 842. $\frac{d \csc^{-1} x}{dx} = -\frac{1}{x \sqrt{x^2 1}}$
- $843. \ \frac{d \sinh x}{dx} = \cosh x.$
- 844. $\frac{d \cosh x}{dx} = \sinh x.$
- $845. \ \frac{d \tanh x}{dx} = \operatorname{sech}^2 x.$
- 846. $\frac{d \, \mathrm{ctnh} \, x}{dx} = \, \mathrm{csch}^2 x.$

- 847. $\frac{d \operatorname{sech} x}{dx} = -\operatorname{sech} x \cdot \tanh x.$ 848. $\frac{d \operatorname{csch} x}{dx} = -\operatorname{csch} x \cdot \operatorname{ctnh} x.$ 849. $\frac{d \sinh^{-1} x}{dx} = \frac{1}{\sqrt{x^2 + 1}}$ 850. $\frac{d \cosh^{-1} x}{dx} = \frac{1}{\sqrt{x^2 - 1}}$ 851. $\frac{d \tanh^{-1} x}{dx} = \frac{1}{1 - x^2}$ 852. $\frac{d \operatorname{ctnh}^{-1} x}{dx} = \frac{1}{1-x^2}$ 853. $\frac{d \operatorname{sech}^{-1} x}{dx} = \frac{-1}{r \sqrt{1-r^2}}$ 854. $\frac{d \operatorname{csch}^{-1} x}{dx} = \frac{-1}{x \sqrt{x^2 + 1}}$ 855. $\frac{d}{dh} \int_{a}^{b} f(x) dx = f(b).$ 856. $\frac{d}{da} \int_{a}^{b} f(x) dx = -f(a).$ 857. $\frac{d}{dr} \int_{a}^{b} f(x,c) dx = \int_{a}^{b} D_{c} f(x,c) \cdot dx + f(b,c) \frac{db}{dc} - f(a,c) \frac{da}{dc}$ 858. $\frac{d^n(u \cdot v)}{dx^n} = v \cdot \frac{d^n u}{dx^n} + n \cdot \frac{dv}{dx} \cdot \frac{d^{n-1} u}{dx^{n-1}}$ $+\frac{n(n-1)}{2!}\cdot\frac{d^2v}{dx^2}\cdot\frac{d^{n-2}u}{dx^{n-2}}+\cdots+u\frac{d^nv}{dx^n}\cdot$
- 859. If $f(x, y, z, \cdots)$ is a homogeneous function of the *n*th order, so that $f(\lambda x, \lambda y, \lambda z, \cdots) \equiv \lambda^n f(x, y, z, \cdots)$, $x \cdot D_x f + y \cdot D_y f + z \cdot D_z f + \cdots \equiv nf.$

99

860. If
$$x = \phi(y)$$
,
 $\frac{dy}{dx} = \frac{1}{\phi'(y)}, \quad \frac{d^2y}{dx^3} = -\frac{\phi''(y)}{[\phi'(y)]^3},$
 $\frac{d^3y}{dx^3} = \frac{3[\phi''(y)]^3 - \phi'(y) \cdot \phi'''(y)}{[\phi'(y)]^5}.$

861. If
$$x = f(t)$$
 and $y = \phi(t)$,
 $\frac{dy}{dx} = \frac{\phi'(t)}{f'(t)}, \quad \frac{d^2y}{dx^2} = \frac{f'(t) \cdot \phi''(t) - f''(t) \cdot \phi'(t)}{[f'(t)]^8}.$

862. If
$$f(x, y) = 0$$
,

$$\frac{dy}{dx} = -\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y} \equiv -\frac{D_x f}{D_y f},$$

$$\frac{d^2 y}{dx^2} = -\frac{D_x^2 f \cdot (D_y f)^2 - 2 D_x D_y f \cdot D_x f \cdot D_y f + D_y^2 f \cdot (D_x f)^2}{(D_y f)^3}.$$

863. If
$$y = f(u, v)$$
, $u = \phi(x)$, and $v = \psi(x)$,

$$\frac{df}{dx} = \frac{\partial f}{\partial u} \cdot \frac{du}{dx} + \frac{\partial f}{\partial v} \cdot \frac{dv}{dx} = u' \cdot D_u f + v' \cdot D_v f,$$

$$\frac{d^2 f}{dx^2} = \frac{\partial^2 f}{\partial u^2} \cdot \left(\frac{du}{dx}\right)^2 + 2 \frac{\partial^2 f}{\partial u \cdot \partial v} \cdot \frac{du}{dx} \cdot \frac{dv}{dx} + \frac{\partial^2 f}{\partial^2 v} \cdot \left(\frac{dv}{dx}\right)^2$$

$$+ \frac{\partial f}{\partial u} \cdot \frac{d^2 u}{dx^2} + \frac{\partial f}{\partial v} \cdot \frac{d^2 v}{dx^2}$$

$$= u'^2 \cdot D^2_u f + 2 u' \cdot v' \cdot D_v D_v f + v'^2 \cdot D_v^2 f$$

$$+ u'' \cdot D_v f + v'' \cdot D_v f$$

864. If
$$f(x, y, z) = 0$$
, $D_x z = -D_x f / D_z f$,
 $D_x^2 z = -[D_x^2 f \cdot (D_z f)^2 - 2 D_z f \cdot D_x f \cdot D_x D_y f + D_z^2 f (D_x f)^2] / (D_z f)^3$,
 $D_x D_y z = -[D_x D_y f \cdot (D_z f)^2 - D_z f D_x f \cdot D_y D_z f + D_z f \cdot D_y f \cdot D_z f + D_z f \cdot D_y f \cdot D_z f] / (D_z f)^3$

100

865. If
$$V = \phi(u, v)$$
, $u = f_1(x, y)$, and $v = f_2(x, y)$,
 $D_x V = D_u \phi \cdot D_x u + D_v \phi \cdot D_x v$,
 $D_x^2 V = D_u^2 \phi \cdot (D_x u)^2 + D_v^2 \phi \cdot (D_x v)^2 + 2 D_u D_v \phi \cdot D_x u \cdot D_x v$
 $+ D_u \phi D_x^2 u + D_v \phi \cdot D_x^2 v$,
 $D_y D_x V = D_u^2 \phi \cdot D_x u \cdot D_y u + D_v^2 \phi \cdot D_x v \cdot D_y v$
 $+ D_u D_v \phi (D_x v \cdot D_y u + D_x u \cdot D_y v)$
 $+ D_u \phi \cdot D_x D_y u + D_v \phi \cdot D_x D_y v$,
 $D_x^2 V + D_y^2 V = D_u^2 \phi \cdot [(D_x u)^2 + (D_y u)^2]$
 $+ D_v^2 \phi \cdot [(D_x v)^2 + (D_y v)^2]$
 $+ 2 D_u D_v \phi \cdot [D_x u \cdot D_x v + D_y u \cdot D_y v]$
 $+ D_u \phi \cdot [D_x^2 u + D_y^2 u]$

In the special case, $u \equiv r \equiv \sqrt{x^2 + y^2}$, $v \equiv \theta \equiv \tan^{-1}(y/x)$, we have $D_r x = \cos \theta = x / \sqrt{x^2 + y^2}$; $D_r y = \sin \theta = y / \sqrt{x^2 + y^2}$;

$$\begin{split} D_{\theta}x &= -r \sin \theta = -y \;; \; D_{\theta}y = r \cos \theta = x \;; \\ D_{x}r &= x \,/ \,\sqrt{x^{2} + y^{2}} = \cos \theta \;; \; D_{y}r = y \,/ \,\sqrt{x^{2} + y^{2}} = \sin \theta \;; \\ D_{x}\theta &= -y \,/ \,(x^{2} + y^{2}) = -\sin \theta \,/ r \;; \\ D_{y}\theta &= x \,/ \,(x^{2} + y^{2}) = \cos \theta \,/ r \;; \; \text{and} \\ D_{x}^{2}V + D_{y}^{2}V &= D_{r}^{2}V + \frac{1}{r} \cdot D_{r}V + \frac{1}{r^{2}} \cdot D_{\theta}^{2}V. \end{split}$$

866. If
$$V = \phi(u, v)$$
, $u = f_1(r, \theta)$, and $v = f_2(r, \theta)$,
 $D_r^2 V + \frac{1}{r} \cdot D_r V + \frac{1}{r^2} \cdot D_{\theta}^2 V = D_u^2 V \cdot \left[(D_r u)^2 + \frac{(D_{\theta} u)^2}{r^2} \right]$
 $+ D_v^2 V \cdot \left[(D_r v)^2 + \frac{(D_{\theta} v)^2}{r^2} \right]$
 $+ 2 D_u D_v V \left[D_r u \cdot D_r v + \frac{D_{\theta} u \cdot D_{\theta} v}{r^2} \right] +$

101

$$+ D_u V \left[D_r^2 u + \frac{1}{r} \cdot D_r u + \frac{1}{r^2} \cdot D_{\theta}^2 u \right]$$
$$+ D_v V \left[D_r^2 v + \frac{1}{r} \cdot D_r v + \frac{1}{r^2} \cdot D_{\theta}^2 v \right] \cdot$$

867. If $V = \phi(u, v, w)$, $u = f_1(x, y, z)$, $v = f_2(x, y, z)$, and $w = f_3(x, y, z)$,

$$\begin{split} D_x V &= D_u V \cdot D_x u + D_v V \cdot D_x v + D_w V \cdot D_x w, \\ D_x^2 V &= D_u^2 V \cdot (D_x u)^2 + D_v^2 V \cdot (D_x v)^2 + D_w^2 V \cdot (D_x w)^2 \\ &+ D_u V \cdot D_x^2 u + D_v V \cdot D_x^2 v + D_w V \cdot D_x^2 w \\ &+ 2 \left(D_u D_v V \cdot D_x u \cdot D_x v + D_u D_w V \cdot D_x u \cdot D_x w \right) \\ &+ D_v D_w V \cdot D_x v \cdot D_x w). \end{split}$$

$$\begin{split} D_x^2 V + D_y^2 V + D_z^2 V &= D_u^2 V \cdot [(D_x u)^2 + (D_y u)^2 + (D_z u)^2] \\ &+ D_v^2 V \cdot [(D_x v)^2 + (D_y v)^2 + (D_z v)^2] \\ &+ D_w^2 V [(D_x w)^2 + (D_y w)^2 + (D_z w)^2] \\ &+ 2 D_u D_v V \cdot [D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v] \\ &+ 2 D_v D_w V \cdot [D_x v \cdot D_x w + D_y v \cdot D_y w + D_z v \cdot D_z w] \\ &+ 2 D_w D_u V \cdot [D_x w \cdot D_x u + D_y w \cdot D_y u + D_z w \cdot D_z u] \\ &+ D_u V \cdot [D_x^2 u + D_y^2 u + D_z^2 u] \\ &+ D_v V \cdot [D_x^2 v + D_y^2 v + D_z^2 w]. \end{split}$$

In particular, if

 $\begin{aligned} x &\equiv r \sin \theta \cos \phi, \ y \equiv r \sin \theta \sin \phi, \ z \equiv r \cos \theta, \\ \text{so that} \ u &\equiv r^2 \equiv x^2 + y^2 + z^2, \ v \equiv \theta \equiv \tan^{-1}(\sqrt{x^2 + y^2}/z), \\ w &\equiv \phi \equiv \tan^{-1}(y/x), \ \text{we have} \\ D_r z &= \cos \theta = z / \sqrt{x^2 + y^2 + z^2}; \\ D_r x &= \sin \theta \cos \phi = x / \sqrt{x^2 + y^2 + z^2}; \end{aligned}$

102

$$D_r y = \sin \theta \sin \phi = y / \sqrt{x^2 + y^2 + z^2};$$

$$D_{\theta} z = -r \sin \theta = -\sqrt{x^2 + y^2};$$

$$D_{\theta} x = r \cos \theta \cos \phi = zx / \sqrt{x^2 + y^2};$$

$$D_{\theta} y = r \cos \theta \sin \phi = zy / \sqrt{x^2 + y^2};$$

$$D_{\phi} z = 0;$$

$$D_{\phi} z = 0;$$

$$D_{\phi} x = -r \sin \theta \sin \phi = -y;$$

$$D_{\phi} y = r \sin \theta \cos \phi = x;$$

$$D_z r = z/r = \cos \theta;$$

$$D_z \theta = -\sqrt{x^2 + y^2}/r^2 = -\sin \theta/r;$$

$$D_z \phi = 0;$$

$$D_x r = x/r = \sin \theta \cos \phi;$$

$$D_x \theta = xz/r^2 \sqrt{x^2 + y^2} = \cos \theta \cos \phi/r;$$

$$D_x \theta = xz/r^2 \sqrt{x^2 + y^2} = \cos \theta \sin \phi/r;$$

$$D_y \theta = zy/r^2 \sqrt{x^2 + y^2} = \cos \theta \sin \phi/r;$$

$$D_y \theta = x/(x^2 + y^2) = -\sin \phi/r \sin \theta;$$

$$D_y \theta = x/(x^2 + y^2) = \cos \phi/r \sin \theta;$$

$$(D_x r)^2 + (D_y r)^2 + (D_z r)^2 = 1;$$

$$(D_x \theta)^2 + (D_y \theta)^2 + (D_z \phi)^2 = 1/r^2;$$

$$(D_x \phi)^2 + (D_y \phi)^2 + (D_z \phi)^2 = 1/r^2 \sin^2\theta;$$

$$(D_x V)^2 + (D_y V)^3 + (D_z V)^2$$

$$= (D_r V)^2 + \left(\frac{D_{\theta} V}{r}\right)^2 + \left(\frac{D_{\theta} V}{r \sin \theta}\right)^2;$$

$$D_x^2 V + D_y^2 V + D_z^2 V$$

868. If $x = f_1(u, v)$, $y = f_2(u, v)$, $z = f_3(u, v)$, $D_x z = \frac{D_u f_3 \cdot D_v f_2 - D_v f_3 \cdot D_u f_2}{D_u f_1 \cdot D_v f_2 - D_v f_1 \cdot D_u f_2}$, $D_y z = \frac{D_v f_3 \cdot D_u f_1 - D_u f_3 \cdot D_r f_1}{D_u f_1 \cdot D_v f_2 - D_v f_1 \cdot D_u f_2}$

869. If
$$x = f(z, u)$$
, and $y = \phi(z, u)$,
 $D_x z = D_u \phi / (D_z f \cdot D_u \phi - D_z \phi \cdot D_u f)$,
 $D_y z = D_u f / (D_z \phi \cdot D_u f - D_z f \cdot D_u \phi)$.

870. If $F_1(x, y, z, u, v) = 0$, $F_2(x, y, z, u, v) = 0$, and $F_8(x, y, z, u, v) = 0$, $D_z z \cdot \begin{vmatrix} D_z F_1 & D_u F_1 & D_v F_1 \\ D_z F_2 & D_u F_2 & D_v F_2 \\ D_z F_3 & D_u F_3 & D_v F_3 \end{vmatrix} = - \begin{vmatrix} D_x F_1 & D_u F_1 & D_v F_1 \\ D_x F_2 & D_u F_2 & D_v F_2 \\ D_x F_3 & D_u F_3 & D_v F_3 \end{vmatrix}$.

871. If
$$F_1(x, y, z) = 0$$
, and $F_2(x, y, z) = 0$,

$$\frac{dy}{D_z F_1 \cdot D_x F_2 - D_z F_2 \cdot D_x F_1} = \frac{dz}{D_x F_1 \cdot D_y F_2 - D_x F_2 \cdot D_y F_1}$$

$$\frac{dx}{D_y F_1 \cdot D_z F_2 - D_y F_2 \cdot D_z F_1}$$

If each of the quantities $y_1, y_2, y_3, \cdots y_n$ is a function of the *n* variables $x_1, x_2, x_3, \cdots x_n$, the determinant,

$D_{x_1}y_1$	$D_{x_2}y_1$	$D_{x_8}y_1\cdot\cdot\cdot$
$D_{x_1}y_2$	$D_{x_2}y_2$	$D_{x_3}y_2\cdots$
••		
$D_{x_1}y_n$	$D_{x_2}y_n$	

104

is called the *functional determinant* or the *Jacobian* of the y's with respect to the x's and is denoted by the expression,

$$\frac{\partial (y_1, y_2, y_3, \cdots, y_n)}{\partial (x_1, x_2, x_3, \cdots, x_n)}, \text{ or by J } (y_1, y_2, \cdots, y_n).$$

- **872.** $\frac{\partial(y_1, y_2, y_3, \cdots, y_n)}{\partial(x_1, x_2, x_3, \cdots, x_n)} \cdot \frac{\partial(x_1, x_2, x_3, \cdots, x_n)}{\partial(y_1, y_2, y_3, \cdots, y_n)} \equiv 1.$
- 873. $\frac{\partial (y_1, y_2, y_3, \cdots , y_n)}{\partial (z_1, z_2, z_3, \cdots , z_n)} \cdot \frac{\partial (z_1, z_2, z_3, \cdots , z_n)}{\partial (x_1, x_2, x_3, \cdots , x_n)} = \frac{\partial (y_1, y_2, y_3, \cdots , y_n)}{\partial (x_1, x_2, x_3, \cdots , x_n)} \cdot \cdot$

If the y's are not all independent but are connected by an equation of the form $\phi(y_1, y_2, y_3, \dots y_n) = 0$, the Jacobian of the y's with respect to the x's vanishes identically; and, conversely, if the Jacobian vanishes identically, the y's are connected by one or more relations of the above-mentioned form.

The directional derivative of any scalar point function, u, at any point, P, in any fixed direction PQ', is the limit, as PQ approaches zero, of the ratio of $u_Q - u_P$ to PQ, where Q is a point on the straight line PQ' between P and Q'. The gradient, h_u , of the function u at P is the directional derivative of u at P taken in the direction in which u increases most rapidly. This direction is normal to the surface of constant u which passes through P.

874. $h_u^2 \equiv (D_x u)^2 + (D_y u)^2 + (D_z u)^2$.

The directional derivative of any scalar point function at any point in any given direction is evidently equal to the product of the gradient and the cosine of the angle between the given direction and that in which the function increases most rapidly.

AUXILIARY FORMULAS.

The normal derivative, at any point, P, of a point function u, taken with respect to another point function v, is the limit as PQ approaches zero of the ratio of $u_Q - u_P$ to $v_Q - v_P$, where Q is a point so chosen on the normal at P of the surface of constant v which passes through P, that $v_Q - v_P$ is positive. If (u, v) denotes the angle between the directions in which u and v increase most rapidly, the normal derivatives of u with respect to v, and of v with respect to u may be written

 $h_u \cos(u, v) \div h_v$, and $h_v \cdot \cos(u, v) \div h_u$

respectively. If $h_u = h_v$, these derivatives are equal.

F. — MISCELLANEOUS FORMULAS.

If s is a plane analytic closed curve, n its normal drawn from within outwards, and dA the element of plane area within s, the usual integral transformation formulas for the functions u and v which, with their derivatives of the first order, are continuous everywhere within s, may be written —

875.
$$\int u \cdot \cos(x, n) \, ds = \iint D_x u \cdot dA.$$

876.
$$\int [u \cdot \cos(x, n) + v \cdot \cos(y, n)] \, ds = \iint (D_x u + D_y v) \, dA.$$

877.
$$\int D_n u \cdot ds = \iint (D_x^2 u + D_y^2 u) \, dA.$$

878.
$$\iint (D_x u \cdot D_x v + D_y u \cdot D_y v) \, dA$$

$$= \int u \cdot D_n v \cdot ds - \iint u (D_x^2 v + D_y^2 v) \, dA$$

$$= \int v \cdot D_n u \cdot ds - \iint v (D_x^2 u + D_y^2 v) \, dA.$$

879.
$$\iint \lambda (D_x u \cdot D_x v + D_y u \cdot D_y v) \, dA = \int \lambda \cdot u \cdot D_n v \cdot ds$$

$$- \iint u [D_x (\lambda \cdot D_x v) + D_y (\lambda \cdot D_y v)] \, dA.$$

106

If ξ and η are two analytic functions which define a set of orthogonal curvilinear coördinates, and if (ξ, n) and (η, n) represent the angles between n and the directions in which ξ and η , respectively, increase most rapidly.

880.
$$\iint h_{\xi} \cdot h_{\eta} \cdot D_{\eta}\left(\frac{u}{h_{\xi}}\right) dA = \int u \cdot \cos(\eta, n) \, ds.$$

881.
$$\iint h_{\xi} \cdot h_{\eta} \cdot D_{\xi}\left(\frac{u}{h_{\eta}}\right) dA = \int u \cdot \cos(\xi, n) \, ds.$$

882. If r is the distance from a fixed point, Q, in the coördinate plane,

 $\int \frac{\cos (r, n) ds}{r} = 0, \pi, \text{ or } 2 \pi, \text{ according as } Q \text{ is without,}$ on, or within s.

If S is an analytic closed surface, n its normal drawn from within outwards, and $d\tau$ the element of volume shut in by S, the usual integral transformation formulas may be written —

883.
$$\iint u \cos(x, n) dS = \iiint D_x u \cdot d\tau.$$

884.
$$\iint [u \cos(x, n) + v \cos(y, n) + w \cos(z, n)] dS$$

$$= \iiint (D_x u + D_y v + D_z w) d\tau.$$

885.
$$\iint D_n u \cdot ds = \iiint (D_x^2 u + D_y^2 u + D_z^2 u) d\tau.$$

886.
$$\iiint (D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v) d\tau$$

$$= \iint u \cdot D_n v \cdot dS - \iiint u (D_x^2 v + D_y^2 v + D_z^2 v) d\tau.$$

$$= \iint v \cdot D_n u \cdot dS - \iiint v (D_x^2 u + D_y^2 u + D_z^2 u) d\tau.$$

887.
$$\iiint \lambda (D_x u \cdot D_x v + D_y u \cdot D_y v + D_z u \cdot D_z v) d\tau$$
$$= \iint \lambda \cdot v \cdot D_n u \cdot dS$$
$$- \iiint v [D_x (\lambda D_x u) + D_y (\lambda D_y u) + D_z (\lambda D_z u)] d\tau.$$

If ξ , η , ζ are three analytic functions which define a system of orthogonal curvilinear coördinates,

888. $\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\xi} \left(\frac{u}{h_{\eta} \cdot h_{\zeta}}\right) d\tau = \iint u \cdot \cos(\xi, n) dS.$ 889. $\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\eta} \left(\frac{u}{h_{\xi} \cdot h_{\zeta}}\right) d\tau = \iint u \cdot \cos(\eta, n) dS.$ 890. $\iiint h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \cdot D_{\zeta} \left(\frac{u}{h_{\xi} \cdot h_{\eta}}\right) d\tau = \iint u \cdot \cos(\zeta, n) dS.$

891. If r is the distance from a fixed point, Q,

 $\int \frac{\cos{(r, n)}}{r^2} dS = 0, 2\pi, \text{ or } 4\pi \text{ according as } Q \text{ is without,}$ on, or within S.

Stokes's Theorem. — The line integral, taken around a closed curve, of the tangential component of a vector point function, is equal to the surface integral, taken over a surface bounded by the curve, of the normal component of the curl of the vector, the direction of integration around the curve forming a right-handed screw rotation about the normals.

If X, Y, Z are the components of the vector,

892.
$$\int (X dx + Y dy + Z dz) = \int \int [(D_y Z - D_z Y) \cos (x, n) + (D_z X - D_x Z) \cos (y, n) + (D_x Y - D_y X) \cos (z, n)] dS.$$

108

Equations 893 to 897 give Poisson's Equation in orthogonal Cartesian, in cylindrical, in spherical, and in orthogonal curvilinear coördinates.

893.
$$\nabla^{2} V \equiv D_{x}^{2} V + D_{y}^{2} V + D_{z}^{2} V = -4 \pi \rho.$$

894.
$$\frac{1}{r} \cdot D_{r} (r \cdot D_{r} V) + \frac{1}{r^{2}} \cdot D_{\theta}^{2} V + D_{z}^{2} V = -4 \pi \rho.$$

895.
$$\sin \theta \cdot D_{r} (r^{2} \cdot D_{r} V) + \frac{D_{\phi}^{2} V}{\sin \theta} + D_{\theta} (\sin \theta \cdot D_{\theta} V) = -4 \pi \rho r^{2} \sin \theta.$$

896.
$$h_{\xi}^{2} \cdot D_{\xi}^{2} V + h_{\eta}^{2} \cdot D_{\eta}^{2} V + h_{\zeta}^{2} \cdot D_{\zeta}^{2} V + D_{\zeta} V \cdot \overline{\nabla}^{2} \zeta = -4 \pi \rho.$$

897.
$$h_{\xi} \cdot h_{\eta} \cdot h_{\zeta} \left\{ D_{\xi} \left(\frac{h_{\xi}}{h_{\eta} h_{\zeta}} \cdot D_{\xi} V \right) + D_{\eta} \left(\frac{h_{\eta}}{h_{\xi} h_{\zeta}} \cdot D_{\eta} V \right) + D_{\zeta} \left(\frac{h_{\zeta}}{h_{\xi} h_{\eta}} \cdot D_{\zeta} V \right) \right\} = -4 \pi \rho.$$

G. — CERTAIN CONSTANTS. $\pi = 3.14159 \ 26535 \ 89793$ $\log_{10} \pi = 0.49714 \ 98726 \ 94134$ $\frac{1}{\pi} = 0.31830 \ 98861 \ 83791$ $\pi^2 = 9.86960 \ 44010 \ 89359$ $\sqrt{\pi} = 1.77245 \ 38509 \ 05516$ $\log_{10} 2 = 0.30102 \ 99956 \ 63981$ $e = 2.71828 \ 18284 \ 59045$ $\log_{10} e = 0.43429 \ 44819 \ 03252$ $\log_{e} 10 = 2.30258 \ 50929 \ 94046$ $\log_{e} 2 = 0.69314 \ 71805 \ 59945$ $\log_{10} e_{10} e = 9.63778 \ 43113 \ 00537$ $\log_{e} \pi = 1.14472 \ 98858 \ 49400$ $\frac{S}{R} = \frac{1}{R}$

INTERPOLATION.

If values of an analytic function, f(x), are given in a table for a number of values of the argument x, separated from one another consecutively by the constant small interval, δ , the differences between successive tabular values of the function are called *first tabular differences*, the differences of these first differences, second tabular differences, and so on. The tabular differences of the first, second, third, and fourth orders corresponding to x = a are

$$\begin{aligned} &\Delta_1 \equiv f(a+\delta) - f(a), \\ &\Delta_2 \equiv f(a+2\delta) - 2 \cdot f(a+\delta) + f(a), \\ &\Delta_3 \equiv f(a+3\delta) - 3 \cdot f(a+2\delta) + 3 \cdot f(a+\delta) - f(a), \\ &\Delta_4 \equiv f(a+4\delta) - 4 \cdot f(a+3\delta) + 6 \cdot f(a+2\delta) - 4 \cdot f(a+\delta) + f(a), \end{aligned}$$

where f(a) is any tabulated value.

The value of the function for x = (a + h), where $h = k\delta$, is

$$f(a + h) = f(a) + k \cdot \Delta_1 + \frac{k(k-1)}{2!} \cdot \Delta_2 + \frac{k(k-1)(k-2)}{3!} \cdot \Delta_3 + \frac{k(k-1)(k-2)(k-3)}{4!} \cdot \Delta_4 + \cdots$$

 $\log_e x = \log_{10} x \cdot \log_e 10 = (2.302585) \log_{10} x.$

N.	0	1	2	3	4	5	6	7	8	9
1.	0.000	0.095	0.182	0.262	0.336	0.405	0.470	0.531	0.588	0.642
2.	0.693	0.742	0.788	0.833	0.875	0.916	0.956	0.993	1.030	1.065
3.	1.099	1.131	1.163	1.194	1.224	1.253	1.281	1.308	1.335	1.361
4.	1.386	1.411	1.435	1.459	1.482	1.504	1.526	1.548	1.569	1.589
5.	1.609	1.629	1.649	1.668	1.686	1.705	1.723	1.740	1.758	1.775
6.	1.792	1.808	1.825	1.841	1.856	1.872	1.887	1.902	1.917	1.932
7.	1.946	1.960	1.974	1.988	2.001	2.015	2.028	2.041	2.054	2.067
8.	2.079	2.092	2.104	2.116	2.128	2.140	2.152	2.163	2.175	2.186
9.	2.197	2.208	2.219	2.230	2.241	2.251	2.262	2.272	2.282	2.29

The Natural Logarithms of Numbers between 1.0 and 9.9.

The Natural Logarithms of Whole Numbers from 10 to 109.

N .	0	1	2	3	4	5	6	7	8	9
1	2.303	2.398	2.485	2.565	2.639	2.708	2.773	2.833	2.890	2.94
2	2.996	3.045	3.091	3.135	3.178	3.219	3.258	3.296	3.332	3.36
3	3.401	3.434	3.466	3.497	3.526	3.555	3.584	3.611	3.638	3.66
4	3.689	3.714	3.738	3.761	3.784	3.807	3.829	3.850	3.871	3.89
5	3.912	3.932	3.951	3.970	3.989	4.007	4.025	4.043	4.060	4.07
6	4.094	4.111	4.127	4.143	4.159	4.174	4.190	4.205	4.220	4.23
7	4.248	4.263	4.277.	4.290	4.301	4.317	4.331	4.344	4.357	4.36
8	4.382	4.391	4.407	4.419	4.431	4.443	4.454	4.466	4.477	4.48
9	4.500	4.511	4.522	4.533	4.543	4.554	4.561	4.575	4.585	4.59
10	4.605	4.615	4.625	4.635	4.644	4.654	4.663	4.673	4.682	4.69

ŧ

The Values in Circular Measure of Angles which are given in Degrees and Minutes.

Radians.	Equivalents.	Radians.	Equivalents.
0.0001	0° 0′ 20″.6	0.6000	34° 22′ 38″.9
0.0002	0° 0′ 41″.3	0.7000	40° 6′ 25″.4
0.0003	0° 1′ 01″.9	0.8000	45° 50′ 11″.8
0.0004	0° 1′ 22″.5	0.9000	51° 33′ 58″.3
0.0005	0° 1′ 43″.1	1.0000	57° 17′ 44″.8
0.0006	0° 2′ 03″.8	2.0000	114° 35′ 29″.6
0.0007	0° 2′ 24″.4	3.0000	171° 53′ 14″.4
0.0008	0° 2′ 45″.0	4.0000	229° 10′ 59″.2
0.0009	0° 3′ 05″.6	5.0000	286° 28′ 44″.0
0.0010	0° 3′ 26″.3	6.0000	343° 46′ 28″.8
0.0020	0° 6′ 52″.5	7.0000	401° 4′ 13″.6
0.0030	0° 10′ 18″.8	8.0000	458° 21′ 58″.4
0.0040	0° 13′ 45″.1	9.0000	515° 39′ 4 3″.3
0.0050	0° 17′ 11″.3	10.0000	572° 57′ 28″.1
0.0060	0° 20′ 37″.6	20.0000	1145° 54′ 56″.1
0.0070	0° 24′ 03″.9	30.0000	1718° 52′ 24″.2
0.0080	0° 27′ 30″.1	40.0000	2291° 49′ 52″.2
0.0090	0° 30′ 56″.4	50.0000	2864° 47′ 20″.3
0.0100	0° 34′ 22″.6	60.0000	3437° 44′ 48″.4
0.0200	1° 8′ 45″.3	70.0000	4010° 42′ 16″.4
0.0300	1° 43′ 07″.9	80.0000	4583° 39′ 44″.5
0.0400	2° 17′ 30″.6	90.0000	5156° 37′ 12′′.6
0.0500	2° 51′ 53″.2	100.0000	5729° 34′ 40″.6
0.0600	3° 26′ 15″.9	$2\pi = 6.28319$	360°
0.0700	4° 0′ 38″.5	$4\pi = 12.56637$	720°
0.0800	4° 35′ 01″.2	$6\pi = 18.84956$	1080°
0.0900	5° 9′ 23″.8	$8 \pi = 25.13274$	1440°
0.1000	5° 43′ 46″.5	$10 \pi = 31.41593$	1800°
0.2000	11° 27′ 33″.0	$12 \pi = 37.69911$	2160°
0.3000	17° 11′ 19″.4	$14 \pi = 43.98230$	2520°
0.4000	22° 55′ 05″.9	$16 \pi = 50.26548$	2880°
0.5000	28° 38′ 52″.4	$18 \pi = 56.54867$	3240°

Equivalents of Radians in Degrees, Minutes, and Seconds of Arc.

:

	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	0.000	0.316	0.447	0.548	0.632	0.707	0.775	0.837	0.894	0.949
1	1.000	1.049	1.095	1.140	1.183	1.225	1.265	1.304	1.342	1.378
2	1.414	1.449	1.483	1.517	1.549	1.581	1.612	1.643	1.673	1.703
3	1.732	1.761	1.789	1.817	1.844	1.871	1.897	1.924	1.949	1.975
4	2.000	2.025	2.049	2.074	2.098	2.121	2.145	2.168	2.191	2.214
5	2.236	2.258	2.280	2.302	2.324	2.345	2.366	2.387	2.408	2.429
6	2.449	2.470	2.490	2.510	2.530	2.550	2.569	2.588	2.608	2.627
7	2.646	2.665	2.683	2.702	2.720	2.739	2.757	2.775	2.793	2.811
8	2.828	2.846	2.864	2.881	2.898	2.915	2.933	2.950	2.966	2.983
9	3.000	3.017	3.033	3.050	3.066	3.082	3.098	3.114-	3.130	3.146
10	3.162	3.178	3.194	3.209	3.225	3.240	3.256	3.271	3.286	3.302

The Square Roots of Certain Numbers between 0.0 and 11.

The S	Square	Roots (of Whole	Numbers	between	10 and	100.
-------	--------	---------	----------	---------	---------	--------	------

	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
1	3.162	3.317	3.464	3.606	3.742	3.873	4.000	4.123	4.243	4.359
2	4.472	4.583	4.690	4.796	4.899	5.000	5.099	5.196	5.292	5.385
3	5.477	5.568	5.657	5.745	5.831	5.916	6.000	6.083	6.164	6.245
4	6.325	6.403	6.481	6.557	6.633	6.708	6.782	6.856	6.928	7.000
5	7.071	7.141	7.211	7.280	7.348	7.416	7.483	7.550	7.616	7.681
6	7.746	7.810	7.874	7.937	8.000	8.062	8.124	8.185	8.246	8.307
7	8.367	8.426	8.485	8.544	8.602	8.660	8.718	8.775	8.832	8.888
8	8.944	9.000	9.055	9.110	9.165	9.220	9.274	9.327	9.381	9.434
9	9.487	9.539	9.592	9.644	9.695	9.747	9.798	9.849	9.900	9.950

.

·..

:

. .

x	log ₁₀ e ^x	$\log_{10}e^{-x}$
0.00001	0.0000043429	ī.9999956571
0.00002	0.0000086859	ī.9999913141
0.00003	0.0000130288	1.9999869712
0.00004	0.0000173718	1.9999826282
0.00005	0.0000217147	1.9999782853
0.00006	0.0000260577	1.9999739423
0.00007	0.0000304006	ī.9999695994
0.00008	0.0000347436	1.9999652564
0.00009	0.0000390865	ī.9999609135
0.00010	0.0000434294	1.9999565706
0.00020	0.0000868589	1.9999131411
0.00030	0.0001302883	1.9998697117
0.00040	0.0001737178	1.9998262822
0.00050	0.0002171472	1.9997828528
0.00060	0.0002605767	1.9997394233
0.00070	0.0003040061	1.9996959939
0.00080	0.0003474356	1.9996525644
0.00090	0.0003908650	1.9996091350
0.00100	0.0004342945	1.9995657055
0.00200	0.0008685890	1.9991314110
0.00300	0.0013028834	1.9986971166
0.00400	0.0017371779	1.9982628221
0.00500	0.0021714724	1.9978285276
0.00600	0.0026057669	1.9973942331
0.00700	0.0030400614	1.9969599386
0.00800	0.0034743559	1.9965256441
0.00900	0.0039086503	1.9960913497
0.01000	0.0043429448	1.9956570552
0.02000	0.0086858896	1.9913141104
0.03000	0.0130288345	1.9869711655
0.04000	0.0173717793	1.9826282207
0.05000	0.0217147241	1.9782852759
0.06000	0.0260576689	1.9739423311
0.07000	0.0304006137	1.9695993863

The Common Logarithms of e^x and e^{-x} .

TABLES.

x	$\log_{10} e^x$	$\log_{10} e^{-x}$
0.08000	0.0347435586	ī.9652564414
0.09000	0.0390865034	1.9609134966
0.10000	0.0434294482	1.9565705518
0.20000	0.0868588964	1.9131411036
0.30000	0.1302883446	1.8697116554
0.40000	0.1737177928	1.8262822072
0.50000	0.2171472410	1.7828527590
0.60000	0.2605766891	1.7394233109
0.70000	0.3040061373	1.6959938627
0.80000	0.3474355855	1.6525644145
0.90000	0.3908650337	1.6091349663
1.00000	0.4312914819	1.5657055181
2.00000	0.8685889638	1.1314110362
3.00000	1.3028834457	2.6971165543
4.00000	1.7371779276	2.2628220724
5.00000	2.1714724095	3.8285275905
6.00000	2.6057668914	3.3942331086
7.00000	3.0400613733	4.9599386267
8.00000	3.4743558552	4.5256441448
9.00000	3.9086503371	4.0913496629
10.00000	4.3429448190	5.6570551810
20.00000	8.6858896381	9.3141103619
30.00000	13.0288344571	14.9711655429
40.00000	17.3717792761	18.6282207239
50.00000	21.7147240952	22.2852759048
60.00000	26.0576689142	27.9423310858
70.00000	30.4006137332	31.5993862668
80.00000	34.7435585523	35.2564414477
90.00000	39.0865033713	40.9134966287
100.00000	43.4294481903	44.5705518097
200.00000	86.8588963807	87.1411036193
300.00000	130.2883445710	131.7116554290
400.00000	173.7177927613	174.2822072387
500.00000	217.1472409516	218.8527590484

Note: $\log e^{x+y} = \log e^{x} + \log e^{y}$. Thus, $\log e^{113.1478} = 49.139465180$.

The Values of e^{-x} for Certain Values of x.

x	log ₁₀ e-x	e-x	x	$\log_{10} e^{-x}$	ex	x	log ₁₀ ex	e-x
1/10	9.956571	0.90484	9/5	9.218270	0.16530	25/4	7.285659	0.00193
1/8	9.945713	0.88250	2	9.131411	0.13533	32/5	7.220515	0.00167
1/6	9.927618	0.84648	9/4	9.022837	0.10540	7	6.959939	0.00091
1/5	9.913141	0.81873	5/2	8.914264	0.08209	36/5	6.873080	0.00075
1/4	9.891426	0.77880	8/3	8.841881	0.06948	8	6.525644	0.00034
1/3	9.855235	0.71653	3	8.697117	0.04979	81/10	6.482215	0.00030
2/5	9.826282	0.67032	25/8	8.642830	0.04394	49/6	6.453252	0.00028
1/2	9.782853	0.60653	16/5	8.610258	0.04076	25/3	6.380\$79	0.00024
2/3	9.710470	0.51342	18/5	8.436540	0.02732	9	6.091350	0.00012
4/5	9.652564	0.44933	4	8.262822	0.01832	49/5	5.743914	0.00006
9/10	9.609135	0.40657	25/6	8.190439	0.01550	10	5.657055	0.00004
1	9.565706	0.36788	9/2	8.045675	0.01111	32/3	5.367526	0.00002
9/8	9.511419	0.32465	49/10	7.871957	0.00745	11	5.222761	0.00002
4/3	9.420941	0.26360	5	7.828528	0.00674	12	4.788467	0.00001
3/2	9.348558	0.22313	6	7.394233	0.00248	13	4.354173	0.00000
8/5	9.305129	0.20190	49/8	7.339946	0.00218	14	3.919877	0.00000

These quantities with the numbers in the preceding table are useful in computing the values of series of the form

$$\sum_{k=1}^{k=\infty} A_k \cdot e^{-k^2 m t}.$$

$\sin^{-1}k$	K	E	$\sin^{-1}k$	K	E	$\sin^{-1}k$	K	E
0°	1.5708	1.5708	30°	1.6858	1.4675	60°	2.1565	1.2111
1°	1.5709	1.5707	31°	1.6941	1.4608	61°	2.1842	1.2015
2°	1.5713	1.5703	32°	1.7028	1.4539	62°	2.2132	1.1920
3°	1.5719	1.5697	33°	1.7119	1.4469	63°	2.2435	1.1826
4°	1.5727	1.5689	340	1.7214	1.4397	64°	2.2754	1.1732
5°	1.5738	1.5678	35°	1.7312	1.4223	65°	2.3088	1.1638
6°	1.5751	1.5665	36°	1.7415	1.4248	66°	2. 3 439	1.1545
7°	1.5767	1.5649	37°	1.7522	1.4171	67°	2.3809	1.1453
8°	1.5785	1.5632	38°	1.7633	1.4092	6 8°	2.4198	1.1362
- 9º	1.5805	1.5611	39°	1.7748	1.4013	69°	2.4610	1.1272
10°	1.5828	1.5589	40°	1.7868	1.3931	70°	2.5046	1.1184
11°	1.5854	1.5564	41°	1.7992	1.3849	71°	2.5507	1.1096
12°	1.5882	1.5537	42°	1.8122	1.3765	72°	2.5998	1.1011
13°	1.5913	1.5507	43°	1.8256	1.3680	73°	2.6521	1.0927
14°	1.5946	1.5476	44°	1.8395	1.3594	74°	2.7081	1.0844
15°	1.5981	1.5442	45°	1.8541	1.3506	75°	2.7681	1.0764
16°	1.6020	1.5405	46°	1.8691	1.3418	76°	2.8327	1.0686
17°	1.6061	1.5367	47°	1.8848	1.3329	77°	2.9026	1.0611
18°	1.6105	1.5326	48°	1.9011	1.3238	78°	2.9786	1.0538
19°	1.6151	1.5283	49°	1.9180	1.3147	79°	3.0617	1.0468
20°	1.6200	1.5238	50°	1.9356	1.3055	80°	3.1534	1.0401
21°	1.6252	1.5191	51°	1.9539	1.2963	81°	3.2553	1.0338
22°	1.6307	1.5141	52°	1.9729	1.2870	82°	3.3699	1.0278
23°	1.6365	1.5090	53°	1.9927	1.2776	83°	3.5004	1.0223
24°	1.6426	1.5037	54°	2.0133	1.2681	84°	3.6519	1.0172
25°	1.6490	1.4981	55°	2.0347	1.2587	85°	3.8317	1.0127
26°	1.6557	1.4924	56°	2.0571	1.2492	86°	4.0528	1.0086
27°	1.6627	1.4864	57°	2.0804	1.2397	87°	4.3387	1.0053
2 8°	1.6701	1.4803	58°	2.1047	1.2301	88°	4.7427	1.0026
29°	1.6777	1.4740	59°	2.1300	1.2206	89°	5.4349	1.0008

ļ

-

Values of the Complete Elliptic Integrals, K and E, for Different Values of the Modulus, k.

4	$\alpha = \sin^{-1}k.$										
φ	0°	10°	15°	30°	45°	60°	75°	80°	90°		
1°	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174		
2°	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349		
3°	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524	0.0524		
4°	0.0698	0.0698	0.0698	0.0698	0.0698	0.0699	0.0699	0.0699	0.0699		
5°	0.0873	0.0873	0.0873	0.0873	0.0873	0.0874	0.0874	0.0874	0.0874		
10°	0.1745	0.1746	0.1746	0.1748	0.1750	0.1752	0.1754	0.1754	0.1754		
15°	0.2618	0.2619	0.2620	0.2625	0.2633	0.2641	0.2646	0.2647	0.2648		
20 °	0.3491	0.3493	0.3495	0.3508	0.3526	0.3545	0.3559	0.3562	0.3564		
25°	0.4363	0.4367	0.4372	0.4397	0.4433	0.4470	0.4498	0.4504	0.4509		
30°	0.5236	0.524.3	0.5251	0.5294	0.5356	0.5422	0.5474	0.5484	0.5493		
35°	0.6109	0.6119	0.6132	0.6200	0.6300	0.6408	0.6495	0.6513	0.6528		
40°	0.6981	0.6997	0.7016	0.7116	0.7267	0.7436	0.7574	0.7604	0.7629		
45°	0.7854	0.7876	0.7902	0.8041	0.8260	0.8512	0.8727	0.8774	0.8814		
50°	0.8727	0.8756	0.8792	0.8982	0.9283	0.9646	0.9971	1.0044	1.0107		
55°	0.9599	0.9637	0.9683	0.9933	1.0337	1.0848	1.1331	1.1444	1.1542		
60°	1.0472	1.0519	1.0577	1.0896	1.1424	1.2125	1.2837	1.3014	1.3170		
65°	1.1345	1.1402	1.1474	1.1869	1.2545	1.3489	1.4532	1.4810	1.5064		
70°	1.2217	1.2286	1.2373	1.2853	1.3697	1.4944	1.6468	1.6918	1.7354		
75°	1.3090	1.3171	1.3273	1.3846	1.4879	1.6492	1.8714	1.9468	2.0276		
80°	1.3963	1.4056	1.4175	1.4846	1.6085	1.8125	2.1339	2.2653	2.4362		
85°	1.4835	1.4942	1.5078	1.5850	1.7308	1.9826	2.4366	2.6694	3.1313		
86°	1.5010	1.5120	1.5259	1.6052	1.7554	2.0172	2.5013	2.7612	3.3547		
87°	1.5184	1.5297	1.5439	1.6253	1.7801	2.0519	2.5670	2.8561	3.6425		
88°	1.5359	1.5474	1.5620	1.6454	1.8047	2.0867	2.6336	2.9537	4.0481		
89°	1.5533	1.5651	1.5801	1.6656	1.8294	2.1216	2.7007	3.0530	4.7414		
90°	1.5708	1.5828	1.5981	1.6858	1.8541	2.1565	2.7681	3.1534	Inf.		

Values of $F(k, \phi)$ for Certain Values of k and ϕ . $F(k, \phi) = \int_{0}^{\phi} \frac{dz}{\sqrt{1 - k^2 \sin^2 z}} \cdot$ Values of $E(k, \phi)$ for Certain Values of k and ϕ .

	Cb			
$E(k, \phi) = \int$	v √1 ·	- k ²	$\sin^2 z$	· dz.

				α	$= \sin^{-1}$	k.			
φ	0°	10°	15°	30°	45	60°	75°	80°	90°
1°	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174	0.0174
2°	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349	0.0349
3°	0.0524	0.0524	0.0524	0.0524	0.0524	0.0523	0.0523	0.0523	0.0523
4°	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698	0.0698
5°	0.0873	0.0873	0.0873	0.0872	0.0872	0.0872	0.0872	0.0872	0.0872
10°	0.1745	0.1745	0.1745	0.1743	0.1741	0.1739	0.1737	0.1737	0.1736
15°	0.2618	0.2617	0.2616	0.2611	0.2603	0.2596	0.2590	0.2589	0.2588
20°	0.3491	0.3489	0.3486	0.3473	0.3456	0.3438	0.3425	0.3422	0.3420
25°	0.4363	0.4359	0.4354	0.4330	0.4296	0.4261	0.4236	0.4230	0.4226
30°	0.5236	0.5229	0.5221	0.5179	0.5120	0.5061	0.5016	0.5007	0.5000
35°	0.6109	0.6098	0.6085	0.6019	0.5928	0.5833	0.5762	0.5748	0.5736
40°	0.6981	0.6966	0.6947	0.6851	0.6715	0.6575	0.6468	0.6446	0.6428
45°	0.7854	0.7832	0.7806	0.7672	0.7482	0.7282	0.7129	0.7097	0.7071
50°	0.8727	0.8698	0.8663	0.8483	0.8226	0.7954	0.7741	0.7697	0.7660
55°	0.9599	0.9562	0.9517	0.9284	0.8949	0.8588	0.8302	0.8242	0.8192
60°	1.0472	1.0426	1.0368	1.0076	0.9650	0.9184	0.8808	0.8728	0.8660
65°	1.1345	1.1288	1.1218	1.0858	1.0329	0.9743	0.9258	0.9152	0.9063
70°	1.2217	1.2149	1.2065	1.1632	1.0990	1.0266	0.9652	0.9514	0.9397
7 5°	1.3090	1.3010	1.2911	1.2399	1.1635	1.0759	0.9992	0.9814	0.9659
80°	1.3963	1.3870	1.3755	1.3161	1.2266	1.1225	1.0282	1.0054	0.9848
85°	1.4835	1.4729	1.4598	1.3919	1.2889	1.1673	1.0534	1.0244	0.9962
86°	1.5010	1.4901	1.4767	1.4070	1.3012	1.1761	1.0581	1.0277	0.9976
87°	1.5184	1.5073	1.4936	1.4221	1.3136	1.1848	1.0628	1.0309	0.9986
88°	1.5359	1.5245	1.5104	1.4372	1.3260	1.1936	1.0674	1.0340	0.9994
89°	1.5533	1.5417	1.5273	1.45 24	1.3383	1.2023	1.0719	1.0371	0.9998
90°	1.5708	1.5589	1.5442	1.4675	1.3506	1.2111	1.0764	1.0401	1.0000
		L							

Hyperbolic Functions.

, x	ex	e- x	$\sinh x$	$\cosh x$	$\operatorname{gd} x$
0.00	1.0000	1.0000	0.0000	1.0000	0.0000
.01	1.0100	0.9900	.0100	1.0000	0.5729
.02	1.0202	.9802	.0200	1.0002	1.1458
.03	1.0305	.9704	.0300	1.0004	1.7186
.04	1.0408	.9608	.0400	1.0008	2.2912
.05	1.0513	.9512	.0500	1.0013	2.8636
.06	1.0618	.9418	.0600	1.0018	3.4357
.07	1.0725	.9324	.0701	1.0025	4.0074
.08	1.0833	.9231	.0801	1.0032	4.5788
.09	1.0942	.9139	.0901	1.0041	5.1497
.10	1.1052	.9048	.1002	1.0050	5.720
.11	1.1163	.8958	.1102	1.0061	6.290
.12	1.1275	.8869	.1203	1.0072	6.859
.13	1.1388	.8781	.1304	1.0085	7.428
.14	1.1503	.8694	.1405	1.0098	7.995
.15	1.1618	.8607	.1506	1.0113	8.562
.13 .16 .17 .18 .19	1.1735 1.1853 1.1972 1.2092	.8521 .8437 .8353 .8270	.1607 .1708 .1810 .1911	1.0128 1.0145 1.0162 1.0181	9.128 9.694 10.258 10.821
.20	1.2214	.8187	.2013	1.0201	11.384
.21	1.2337	.8106	.2115	1.0221	11.945
.22	1.2461	.8025	.2218	1.0243	12.505
.23	1.2586	.7945	.2320	1.0266	13.063
.24	1.2712	.7866	.2423	1.0289	13.621
.25	1.2840	.7788	.2526	1.0314	14.177
.26	1.2969	.7711	.2629	1.0340	14.732
.27	1.3100	.7634	.2733	1.0367	15.285
.28	1.3231	.7558	.2837	1.0395	15.837
.29	1.3364	.7483	.2941	1.0423	16.388
.30	1.3499	.7408	.3045	1.0453	16.937
.31	1.3634	.7334	.3150	1.0484	17.484
.32	1.3771	.7261	.3255	1.0516	18.030
.33	1.3910	.7189	.3360	1.0549	18.573
.34	1.4049	.7118	.3466	1.0584	19.116
.35	1.4191	.7047	.3572	1.0619	19.656
.36	1.4333	.6977	.3678	1.0655	20.195
.37	1.4477	.6907	.3785	1.0692	20.732
.38	1.4623	.6839	.3892	1.0731	21.267
.39	1.4770	.6771	.4000	1.0770	21.800
.40	1.4918	.6703	.4108	1.0811	22.331
.41	1.5068	.6636	.4216	1.0852	22.859
.42	1.5220	.6570	.4325	1.0895	23.386
.43	1.5373	.6505	.4434	1.0939	23.911
.44	1.5527	.6440	.4543	1.0984	24.43 4
.45	1.5683	.6376	.4653	1.1030	24.955
.46	1.5841	.6313	.4764	1.1077	25.473
.47	1.6000	.6250	.4875	1.1125	25.989
.48	1.6161	.6188	.4986	1.1174	26.503
.49	1.6323	.6126	.5098	1.1225	27.015
.49 0.50	1.6323	0.6065	0.5211	1.1225	27.015 27.524

NOTE. - This table is taken from Prof. Byerly's Treatise on Fourier's Series, published by Messrs. inn & Co.

٠

1					
x _	ex	e- x	$\sinh x$	$\cosh x$	$\operatorname{gd} x$
0.50	1.6487	0.6065	0.5211	1.1276	27.524
.51	1.6653	.6005	.5324	1.1329	28.031
.52	1.6820	.5945	.5438	1.1383	28.535
.53	1.6989	.5886	.5552	1.1438	29.037
.55	1.7160	.5827	.5666	1.1494	29.537
.55	1.7333	.5770	.5782	1.1551	30.034
.56	1.7507	.5712	.5897	1.1609	30.529
.57	1.7683	.5655	.6014	1.1669	31.021
.58	1.7860	.5599	.6131	1.1730	31.511
.59	1.8040	.5543	.6248	1.1792	31.998
.60	1.8221	.5488	.6367	1.1855	32.483
.61	1.8404	.5433	.6485	1.1919	32.965
.62	1.8589	.5379	.6605	1.1984	33.444
.63	1.8776	.5326	.6725	1.2051	33.921
.03	1.8965	.5273	.6846	1.2119	34.395
.65	1.9155	.5220	.6967	1.2188	34.867
	1.9348	.5169	.7090	1.2258	35.336
.66 .67	1.9548	.5117	.7213	1.2230	35.802
.67 .68	1.9542	.5066	.7336	1.2330	36.265
		.5016	.7461	1.2402	36.726
.69	1.9937	-			1 1
.70	2.0138	.4966	.7586	1.2552	37.183
.71	2.0340	.4916	.7712	1.2628	37.638
.72	2.0544	.4867	.7838	1.2706	38.091
.73	2.0751	.4819	.7966	1.2785	38.540
× .74	2.0959	.4771	.8094	1.2865	38.987
.75	2.1170	.4724	.8223	1.2947	39.431
.76	2.1383	.4677	.8353	1.3030	39.872
.77	2.1598	.4630	.8484	1.3114	40.310
.78	2.1815	.4584	.8615	1.3199	40.746
.79	2.2034	.4538	.8748	1.3286	41.179
.80	2.2255	.4493	.8881	1.3374	41.608
.81	2.2479	.4449	.9015	1.3464	42.035
.82	2.2705	.4404	.9150	1.3555	42.460
.83	2.2933	.4360	.9286	1.3647	42.881
.84	2.3164	.4317	.9423	1.3740	43.299
.85	2.3396	.4274	.9561	1.3835	43.715
.86	2.3632	.4232	.9700	1.3932	44.128
.87	2.3869	.4190	.9840	1.4029	44.537
.88	2.4109	.4148	.9981	1.4128	44.944
.89	2.4351	.4107	1.0122	1.4229	45.348
.90	2.4596	.4066	1.0265	1.4331	45.750
.91	2.4843	.4025	1.0409	1.4434	46.148
.92	2.5093	.3985	1.0554	1.4539	46.544
.93	2.5345	.3946	1.0700	1.4645	46.936
.94	2.5600	.3906	1.0847	1.4753	47.326
.95	2.5857	.3867	1.0995	1.4862	47.713
.96	2.6117	.3829	1.1144	1.4973	48.097
.97	2.6379	.3791	1.1294	1.5085	48.478
.98	2.6645	.3753	1.1446	1.5199	48.857
.99	2.6912	.3716	1.1598	1.5314	49.232
1.00	2.7183	0.3679	1.1752	1.5431	49.605
	2.7103	0.3077	1.17.02	Digitized by	100021C

.

4

·,

Hyperbolic Functions.

x	$l \sinh x$	$l \cosh x$	x	$l \sinh x$	$l \cosh x$	x	$l \sinh x$	$l \cosh x$
1.00	0.0701	0.1884	1.50	0.3282	0.3715	2.00	0.5595	0.5754
1.01	.0758	.1917	1.51	.3330	.3754	2.01	.5640	.5796
1.02	.0815	.1950	1.52	.3378	.3794	2.02	.5685	.5838
1.03	.0871	.1984	1.53	.3426	.3833	2.03	.5730	.5880
1.04	.0927	.2018	1.54	.3474	.3873	2.04	.5775	.5922
1.04 1.05 1.06 1.07 1.08 1.09	.0927 .0982 .1038 .1093 .1148 .1203	.2018 .2051 .2086 .2120 .2154 .2189	1.55 1.56 1.57 1.58 1.59	.3521 .3569 .3616 .3663 .3711	.3913 .3952 .3992 .4032 .4072	2.04 2.05 2.06 2.07 2.08 2.09	.5820 .5865 .5910 .5955 .6000	.5964 .6006 .6048 .6090 .6132
$ \begin{array}{c} 1.10\\ 1.11\\ 1.12\\ 1.13\\ 1.14 \end{array} $.1205 .1257 .1311 .1365 .1419 .1472	.2223 .2258 .2293 .2328 .2364	1.60 1.61 1.62 1.63 1.64	.3758 .3805 .3852 .3899 .3946	.4112 .4152 .4192 .4232 .4273	2.10 2.11 2.12 2.13 2.14	.6000 .6089 .6134 .6178 .6223	.6132 .6175 .6217 .6259 .6301 .6343
1.15	.1525	.2399	1.65	.3992	.4313	2.15	.6268	.6386
1.16	.1578	.2435	1.66	.4039	.4353	2.16	.6312	.6428
1.17	.1631	.2470	1.67	.4086	.4394	2.17	.6357	.6470
1.18	.1684	.2506	1.68	.4132	.4434	2.18	.6401	.6512
1.19	.1736	.2542	1.69	.4179	.4475	2.19	.6446	.6555
1.20	.1788	.2578	1.70	.4225	.4515	2.20	.6491	.6597
1.21	.1840	.2615	1.71	.4272	.4556	2.21	.6535	.6640
1.22	.1892	.2651	1.72	.4318	.4597	2.22	.6580	.6682
1.23	.1944	.2688	1.73	.4364	.4637	2.23	.6624	.6724
1.24	.1995	.2724	1.74	.4411	.4678	2.24	.6668	.6767
1.25	.2046	.2761	1.75	.4457	.4719	2.25	.6713	.6809
1.26	.2098	.2798	1.76	.4503	.4760	2.26	.6757	.6852
1.27	.2148	.2835	1.77	.4549	.4801	2.27	.6802	.6894
1.28	.2199	.2872	1.78	.4595	.4842	2.28	.6846	.6937
1.29	.2250	.2909	1.79	.4641	.4883	2.29	.6890	.6979
1.30 1.31 1.32 1.33 1.34	.2300 .2351 .2401 .2451 .2501	.2947 .2984 .3022 .3059 .3097	1.80 1.81 1.82 1.83 1.84	.4687 .4733 .4778 .4824 .4824 .4870	.4924 .4965 .5006 .5048 .5089	2.30 2.31 2.32 2.33 2.34	.6935 .6979 .7023 .7067 .7112	.7022 .7064 .7107 .7150 .7192
1.35	.2551	.3135	1.85	.4915	.5130	2.35	.7156	.7235
1.36	.2600	.3173	1.86	.4961	.5172	2.36	.7200	.7278
1.37	.2650	.3211	1.87	.5007	.5213	2.37	.7244	.7320
1.38	.2699	.3249	1.88	.5052	.5254	2.38	.7289	.7363
1.39	.2748	.3288	1.89	.5098	.5296	2.38	.7333	.7406
1.40	.2797	.3326	1.90	.5143	.5337	2.40	.7377	.7448
1.41	.2846	.3365	1.91	.5188	.5379	2.41	.7421	.7491
1.42	.2895	.3403	1.92	.5234	.5421	2.42	.7465	.7534
1.43	.2944	.3442	1.93	.5279	.5462	2.43	.7509	.7577
1.44	.2993	.3481	1.94	.5324	.550 4	2.44	.7553	.7619
1.45	.3041	.3520	1.95	.5370	.5545	2.45	.7597	.7662
1.46	.3090	.3559	1.96	.5415	.5687	2.46	.7642	.7705
1.47	.3138	.3598	1.97	.5460	.5629	2.47	.7686	.7748
1.48	.3186	.3637	1.98	.5505	.5671	2.48	.7730	.7791
1.49	.3234	.3676	1.99	.5550	.5713	2.49	.7774	.7833
1.50	0.3282	0.3715	2.00	0.5595	0.5754	2.50 Digitized b	0.7818	0.7876

.....

Hyperbolic Functions.

x	$l \sinh x$	$l \cosh x$	x	$l \sinh x$	$l \cosh x$	x	$l \sinh x$	$l \cosh x$
2.50	0.7818	0.7876	2.75	0.8915	0.8951	3.0	1.0008	1.0029
2.51	.7862	.7919	2.76	.8959	.8994	3.1	1.0444	1.0462
2.52	.7906	.7962	2.77	.9003	.9037	3.2	1.0880	1.0894
2.53	.7950	.8005	2.78	.9046	.9080	3.3	1.1316	1.1327
2.54	.7994	.8048	2.79	.9090	.9123	3.4	1.1751	1.1761
2.55 2.56 2.57 2.58 2.59	.8038 .8082 .8126 .8169 .8213	.8091 .8134 .8176 .8219 .8262	2.80 2.81 2.82 2.83 2.83 2.84	.9134 .9178 .9221 .9265 .9309	.9166 .9209 .9252 .9295 .9338	3.5 3.6 3.7 3.8 3.9	1.2186 1.2621 1.3056 1.3491 1.3925	1.2194 1.2628 1.3061 1.3495 1.3929
2.60	.8257	.8305	2.85	.9353	.9382	4.0	1.4360	1.4363
2.61	.8301	.8348	2.86	.9396	.9425	4.1	1.4795	1.4797
2.62	.8345	.8391	2.87	.9440	.9468	4.2	1.5229	1.5231
2.63	.8389	.8434	2.88	.9484	.9511	4.3	1.5664	1.5665
2.64	.8433	.8477	2.89	.9527	.9554	4.4	1.6098	1.6099
2.65	.8477	.8520	2 90	.9571	.9597	4.5	1.6532	1.6533
2.66	.8521	.8563	2.91	.9615	.9641	4.6	1.6967	1.6968
2.67	.8564	.8606	2.92	.9658	.968 4	4.7	1.7401	1.7402
2.68	.8608	.8649	2.93	.9702	.9727	4.8	1.7836	1.7836
2.69	.8652	.8692	2.94	.9746	.9770	4.9	1.8270	1.8270
2.70	.8696	.8735	2.95	.9789	.9813	5.0	1.8704	1.8705
2.71	.8740	.8778	2.96	.9833	.9856	6.0	2.3047	2.3047
2.72	.8784	.8821	2.97	.9877	.9900	7.0	2.7390	2.7390
2.73	.8827	.8864	2.98	.9920	.9943	8.0	3.1733	3.1733
2.74	.8871	.8907	2.99	.9964	.9986	9.0	3.6076	3.6076
2.75	0.8915	0.8951	3.00	1.0008	1.0029	10.0	4.0419	4.0419

For values of x greater than 7.0, we may write, to five places of decimals at least,

 $\log_{10} \sinh x = \log_{10} \cosh x = \log_{\frac{1}{2}} e^x = x (0.4342945) + \overline{1.6989700}.$

n	$\log_{10} \Gamma(n)$								
1.01	ī.9975	1.21	ī.9617	1.41	ī.9478	1.61	ī.9517	1.81	ī.9704
1.02	ī.9951	1.22	ī.9605	1.42	ī.9476	1.62	ī.9523	1.82	1.9717
1.03	ī.9928	1.23	ī.9594	1.43	1.9475	1.63	ī.9529	1.83	1.9730
1.04	ī.9905	1.24	1.9583	1.44	1.9473	1.64	ī.9536	1.84	ī.9743
1.05	ī.9883	1.25	ī.9573	1.45	ī.9473	1.65	ī.9543	1.85	1.9757
1.06	1.9862	1.26	ī.9564	1.46	ī.9472	1.66	ī.9550	1.86	ī.9771
1.07	1.9841	1.27	ī.9554	1.47	ī.9473	1.67	ī.9558	1.87	1.9786
1.08	1.9821	1.28	ī.9546	1.48	1.9473	1.68	ī.9566	1.88	1.9800
1.09	ī.9802	1.29	1.9538	1.49	ī.9474	1.69	1.9575	1.89	ī.9815
1.10	1.9783	1.30	ī.9530	1.50	ī.9475	1.70	ī.9584	1.90	ī.9831
1.11	ī.9765	1.31	ī.9523	1.51	ī.9477	1.71	ī.959 3	1.91	1.9846
1.12	ī.9748	1.32	ī.9516	1.52	1.9479	1.72	1.9603	1.92	1.9862
1.13	ī.9731	1.33	ī.9510	1.53	ī.9 1 82	1.73	ī.961 3	1.93	1.9878
1.14	ī.9715	1.34	ī.95 0 5	1.54	ī.9485	1.74	ī.9623	1.94	ī.9895
1.15	ī.9699	1.35	ī.9500	1.55	ī.9488	1.75	ī.9633	1.95	ī.9912
1.16	ī.9684	1.36	ī.9495	1.56	ī.9 1 92	1.76	1.9644	1.96	ī.9929
1.17	ī.9669	1.37	ī.9491	1.57	1.9496	1.77	ī.9656	1.97	1.9946
1.18	1.9655	1.38	1.9487	1.58	1.9501	1.78	1.9667	1.98	ī.9964
1.19	1.9642	1.39	ī.9483	1.59	1.9506	1.79	1.9679	1.99	ī.9982
1.20	ī.9629	1.40	1.9481	1.60	ī.9511	1.80	1 .9691	2.00	0.0000

The Common Logarithms of $\Gamma(n)$ for Values of n between 1 and 2.

 $\Gamma(z+1) = z \cdot \Gamma(z), \ z > 1.$

					1		
Angle.	Sin.	Свс.	Tan.	Ctn.	Sec.	Cos.	
0 °	0.000	8	0.000	8	1.000	1.000	90°
1	0.017	57.30	0.017	57.29	1.000	1.000	89
2	0.035	28.65	0.035	28.64	1.001	0.999	88
3	0.052	19.11	0.052	19.08	1.001	0.999	87
4	0.070	14.34	0.070	14.30	1.002	0.998	86
5 °	0.087	11.47	0.087	11.43	1.004	0.996	85°
6	0.105	9.567	0.105	9.514	1.006	0.995	84
7	0.122	8.206	0.123	8.144	1.008	0.993	83
8	0.139	7.185	0.141	7.115	1.010	0.990	82
9	0.156	6.392	0.158	6.314	1.012	0.988	81
10°	0.174	5.759	0.176	5.671	1.015	0.985	80°
11	0.191	5.241	0.194	5.145	1.019	0.982	79
12	0.208	4.810	0.213	4.705	1.022	0.978	78
13	0.225	4.445	0.231	4.331	1.026	0.974	77
14	0.242	4.134	0.249	4.011	1.031	0.970	76
15°	0.259	3.86+	0.268	3.732	1.035	0.966	75°
16	0.276	3.628	0.287	3.487	1.040	0.961	74
17	0.292	3.420	0.306	3.271	1.046	0.956	73
18	0.309	3.236	0.325	3.078	1.051	0.951	72
19	0.326	3.072	0.344	2.904	1.058	0.946	71
20°	0.342	2.924	0.364	2.747	1.064	0.940	70°
21	0.358	2.790	0.384	2.605	1.071	0.934	69
22	0.375	2.669	0.404	2.475	1.079	0.927	68
23	0.391	2.559	0.424	2.356	1.086	0.921	67
24	0.407	2.459	0.445	2.246	1.095	0.914	66
25°	0.423	2.366	0 466	2.145	1.103	0.906	65°
26	0.438	2.281	0.488	2.050	1.113	0.899	64
27	0.454	2.203	0.510	1.963	1.122	0.891	63
28	0.469	2.130	0.532	1.881	1.133	0.883	62
29	0.485	2.063	0.554	1.804	1.143	0.875	61
30	0.500	2.000	0.577	1.732	1.155	0.866	60°
31	0.515	1.942	0.601	1.664	1.167	0.857	59
32	0.530	1.887	0.625	1.600	1.179	0.848	58
33	0.545	1.836	0.649	1.540 1.483	1.192	0.839	57
34	0.559	1.788	0.675		1.206	0.829	56
35,	0.574	1.743	0.700	1.428	1.221	0.819	55°
36	0.588	1.701	0.727	1.376	1.236	0.809	54
37	0.602	1.662	0.754	1.327	1.252	0.799	53
38 39	0.616	1.624	0.781	1.280	1.269	0.788	52
	0.629	1.589			1.287	0.777	51
40°	0.643	1.556.	0.839	1.192	1.305	0.766	50'
41	0.656	1.524	0.869	1.150	1.325	0.755	49
42	0.669	1.494	0.900	1.111	1.346	0.743	48
43 44	0.682	1.466	0.933	1.072	1.367 1.390	0.731 0.719	47 46
44 45°	0.695	1.440	1.000	1.000	1.390	0.719	40 45°
40°							
	Cos.	Sec.	Ctn.	Tan.	Свс.	Sin.	Angle.

NATURAL TRIGONOMETRIC FUNCTIONS.

۰.

-		
Loga	111 t.	hma
Junga		uuuo

N	0	1	2	8	4	5	6	7	8	9	P. P. 1. 2. 3. 4. 5
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4.8.12.17.21
11											4 8-11-15-19
12						0969					
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3. 6.10.13.16
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3.6.9.12.15
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3. 6. 8.11.14
16	2041	2068	2095	2122	2148	2175	2201	22 27	2253	2279	3. 5. 8.11.13
17					240 5		24 55	2480	2504	2529	2.5.7.10.12
18					2648			2718			2.5.7.9.12
19	2788	2810	2833	2856	2878	2900	2923	294 5	2967	298 9	2.4.7.911
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2.4.6.811
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	
22	3424	3444	3464	3483	3502	3522	3541	35 60	3579	3598	
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2.4.5.7.9
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3 962	2.4.5.7.9
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2 3. 5. 7. 9
26						4232					
27						4393					
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4600	2.3.5.6.8
29	4624	4639	4654	4669	4683	4698	4713	47.28	4742	4757	1.3.4.6.7
30	4771	4786	4800	4814	4829	4843	4857	4971	4886	4900	1.3.4.6.7
31					4969			5011			
32					5105			5145			
33					5237			5276			
34	5315	5328	5 340	5353	53 66	5378	5391	5403	5416	5428	1.3.4.5.6
35	5441	5453	5485	5478	5490	5502	6614	5527	5530	5551	1.2.4.5.6
36					5611						1. 2. 4. 5. 6
37					6729			5763			
38					5843			5877			
39	5911				5955		5977		5999		1.2.3.4.6
	8001	80.01	8040	8059	8084	8075	8005	8008	81.07	6117	10245
40 41						6075 6180					1 · 2 · 3 · 4 · 5 1 · 2 · 3 · 4 · 5
41					6170 6274			6304			
43					6375			6405			
44					6474			6503			$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
45					6571			6599			
46					6665			6693			
47					6758			6785 8975			
48 49		6821 6911		6839 6928	6848	6857 6946		6875 8984	6972		1. 2. 3. 4. 4 1. 2. 3. 4. 4
	_									_	
50					7024			7050			
51				-							1.2.3.3.4
52 50					7193			7218			
53 54						7284		7300			1
04	1 3 2 4	1332	7340	1348	7356	1304	1012	1000	1000	1990	1. 2. 2. 3. 4

Norg. - This page and the three that follow it are taken from the Mathematical Tables of Prof. J. M. Peirce, published by Messrs. Ginn & Co.

Logarithms.

	N	0	1	2	3	4	5	6	7	8	9	P. P. 1. 2. 3. 4. 5
ļ	55	7404	7412	7410	7427	7495	7443	7451	7450	7466	7474	1.2.2.3.4
l	56			7497		7513		7528			7551	$1 \cdot 2 \cdot 2 \cdot 3 \cdot 4$ $1 \cdot 2 \cdot 2 \cdot 3 \cdot 4$
I	57			7574		7589	7597		7612		7627	1. 2. 2. 3. 4
I	58		7642	7649		7664		7679	7686	7694	7701	1.1 2.3.4
I	59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1.1.2.34
1	60	7782	7780	7708	7803	7810	7818	7825	7832	7839	7846	1.1.2.3.4
	61			7868						7910		1 1 2 3 4
l	62		7931			7952	7959			7980		1 1 2 3 3
I	63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1. 1. 2. 3. 3
	64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1.1.2.3.3
l	65	8120	8136	8142	8149	8156	8162	8169	8176	8182	8189	1.1 2.3.3
	66		8202			8222				8248		$1.1 2.3.3 \\1.1.2.3.3$
	67			8274				8299		8312		1. 1. 2. 3. 3
	68		8331		8344		8357			8376		1. 1. 2. 3. 3
	69	8388		8401	8407	8414	8420	8426		8439	8445	1.1.2.3.3
	70	8451	9457	9469	8470	8476	8482	8488	8404	8500	8506	1.1.2.2.3
I	71			8525						8561		1. 1. 2. 2. 3 $1. 1. 2. 2. 3$
	72			8585		8597				8621	8627	1. 1. 2. 2. 3
	73			8645		8657	8663		8675		8686	1. 1. 2. 2. 3
	74	8692		8704		8716	8722	8727	8733	8739	8745	1.1.2.2.3
I	-	0751	0750	0740			0770	0705	0701	0000		1 1 0 0 0
I	75			8762 8820		8774 8831	8779		8791	8797 8854	8802	1.1.2.2.3
	76 77			8876			8837			8910		1.1.2.2.3 1.1.2.2.3
	78		8927		8938			8954			8971	$1 \cdot 1 \cdot 2 \cdot 2 \cdot 3$ $1 \cdot 1 \cdot 2 \cdot 2 \cdot 3$
	79		8982			8998		9009				$1 \cdot 1 \cdot 2 \cdot 2 \cdot 3$ $1 \cdot 1 \cdot 2 \cdot 2 \cdot 3$
	80			9042				9063		9074		1.1.2.2.3
	81 82			9096 9149				9117 9170		9128 9180	9133	1.1.2.2.3
	82			9149 9201				9222				1.1.2.2 3 1.1.2.2.3
	84			9253						9284		$1 \cdot 1 \cdot 2 \cdot 2 \cdot 3$ $1 \cdot 1 \cdot 2 \cdot 2 \cdot 3$
	85			9304			9320			9335		1.1.2 2.3
	86			9355						9385		1. 1. 2. 2. 3
	87 88		9400 9450		9410 9460		9420	9420 9474		9435 9484		0. 1. 1. 2. 2 0. 1. 1. 2. 2
	89		9499		9509			9523		9533		$\begin{array}{c} 0.1.1.2.2\\ 0.1.1.2.2\\ 0.1.1.2.2 \end{array}$
	90		9547			9562	9566		9576		9586	0. 1. 1. 2. 2
	91	9590		9600		9609	9614			9628		0.1.1.2.2
	92			9647		9657		9666		9675		0.1.1.2.2
	93 94	9685	9689 9736	9694 9741	9699 9745	9703 9750	9708 9754	9713 9759	9717 9763	9722 9768	9727 9773	$\begin{array}{c} \mathbf{0.\ 1.\ 1.\ 2.\ 2}\\ \mathbf{0\ 1.\ 1.\ 2\ 2}\end{array}$
	95	9777			9791			9805			9818	0.1.1.2.2
1	96		9827			9841				9859		0.1.1.2.2
	97		9872		9881 9926	9886 9930		9894 9939		9903		0.1.1.2.2
I	98 99		9917 9961		9920 9969	9930 9974				9948 9991	9952 0906	0. 1. 1. 2. 2 0. 1. 1. 2. 2
Ľ	99	3800	9901	0000	0000	5514	0010	5300	5501	5551	0000	0. 1. 1. 2. 2

 $\log \pi = 0.49715 -$.

 $\log e = 0.43429 + .$

Logarithms.

N	0	1	2	3	4	б	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0028	0000	0035	0039	0043
101		0048			0060	0085		0073		0082	0086
102		0090				0107		0116			0128
103		0133		0141		0149		0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
305											
105	0212			0224			0237		0245		0253
106		0257		0265			0278		0286		0294
107 108		0298	0302		0310 0350			0322			0334 0374
108		0338 0378	0342	0340	0390		0358 0398	0302	0366 0406		0374
103	0374	0370	0304	0380	0380	0394	0390	0404	0400	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111		0457	0461	04 65	0469	0473	0477	0481	0484	0488	0492
112		0496		0 5 04				0519			0531
113	0531		0538	0542	0546	0550		0 55 8			0569
114	0 569	0573	0577	0 580	0584	0588	0592	0596	0599	0603	0607
115	0607	0611	0615	0618	0622	0626	0630	0633	0637	0641	0645
116	0645	0648	0652	0656	0660	0663	0667	0671	0674	0678	0682
117	0682	0686	0689	0693	0697	0700	0704	0708	0711	0715	0719
118	0719		0726		0734	0737	0741		0748		0755
119	0755	0759	0763	0766	0770	0774	0777	0781	078 5	0788	0792
120	0792	0795	0799	0803	0806	0810	0813	0817	0821	0824	0828
121		0831	0835	0839	0842	0846	0849		0856		0864
122		0867	0871		0878	0881	0885	0888			0899
123		0903				0917		0924			0984
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	0969
125	0969	0973	0078	0980	0083	0986	0000	0993	0007	1000	1004
126		1007		1014		1021		1028			1038
127		1041		1048		1055	1059		1065		1072
128		1075	1079	1082		1089	1092	1096			1106
129		1109				1123			1133		1139
130	1100	1140	1140	1140	1150	1150	1150	1100	1100	1100	1170
131	1139 1173			1149 1183		1156 1189	1193		1166 1199		1173 1206
131		1209				1222			1232		1239
133	1239				1252	1255		1261		1268	1371
134		1274			1284	1287		1294		1300	1303
			_								
135	1303	1307 1339		1313 1345	$1316 \\ 1348$	1319 1351	1323		1329	1332	1335 1367
136 137	1335 1367			1340	1348	1351		1358	1361		1307
137	1399		1405	1408	1411		1418		1424		1430
130		1433		1440	1443	1446		1452			1461
140	1461			1471	1474	1477		1483			1492 1523
141	1492		1498 1529	1501 1522	1504 1535	1508 1538	1511	1514	1517	1550	1523
142 .143			1529	1562	1565	1538	1572		1578	1581	1584
143		1587		1593		1599	1602	1605	1608	1611	1614
145		1617		1623		1629	1632		1638		1644 1673
146		1647		1652	1655	1658 1688	1661 1691		1667 1697	1670 1700	1703
147 148	1673 1703		1679 1708	1682 1711	1685 1714	1717	1720	1723	1726	1729	1703
140	1732		1738		1744			1752			1761
1	1.104	1.00	2.00	2,11			2.10	2,04	1.05	2.00	1

Logarithms.

ç

N	0	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151				1798	1801	1804			1813	1816	1818
152			1824		1830	1833		1838	1841	1844	1847
153	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	19 40	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127				2138			2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177		2 183	2185		2191		2196	2198	2201
166	2201		2206		2212		2217		2222	2225	2227
167	2227		2232		2238		2243		2248	2251	2 253
168	2253		2258		2263		2269		2274		2279
169	2279	228 1	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	235 0	2353	2355
172	2355	2358	2360	236 3	2365		237 0		2375	2378	2380
173			2385		2390		2395		2400	2403	2405
174	240 5	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472		2477	2480
177	2480			2487			2494			2502	2504
178	2504		2509		2514		2519		2524		2529
179	2529	2531	2583	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	25 60	2562	2565	2567	2570	2572	2574	2577
181	2577	25 79	2582	2584	2586	2589	2591	2594	2 596	2598	2601
182		2603		2608	2610		2615		2620	2622	2625
183	262 5	2627	2629	2632	2634		2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697			2704	2707				2716	2718
187	2718	2721	2723		2728		2732		2737	2739	2742
188	2742	2744	2746		2751		2755	2758	2760	2762	2765
189	2765	276 7	2769	2772	2774	2776	2778	2781	2783	2785	2788
190	2788	2790	2792	2794		2799	2801	2804	2806	2808	2810
191	2810			2817		2822		28 26		2831	2833
192	2833			2840			2847		2851	2853	2856
193	2856	2858	2860		2865	2867	2869	2871		2876	2878
194	2878	2880	2882	2885	2887	2889	2891	2894	2896	2888	2900
195	2900	2903	2905	2907	2909		2914		2918	2920	2923
196	2923	2925	2927	2929	2931		2936		2940	2942	2945
197	2945	2947	2949	2951	2953		2958		2962	2964	2967
198	2967	2969	2971	2973	2975		2980		2984	2986	2989
199	2989	2991	2993		2997				3006	3008	3010

Digitized by Google

•

Trigonometric Functions.

RADIANS.	DEGREES.	SIP	NES.	cosi	INES.	TANG	BNTS.	COTAN	GENTS.		
0.0000	0° 00′	Nat.	Log.	Nat.	Log. 0.0000	Nat.	Log.	Nat.	Log.	90° 00'	1.5708
0.0000	10	.0000	∞ 7.4637	1.0000 1.0000	.0000	.0000	∞ 7.4637	∞ 343.77	∞ 2.5363	50	1.5708
0.0058	20	.0058		1.0000	.0000	.0058	.7648	171.89	.2352	40	1.5650
0.0087	30	.0087	.9408	1.0000	.0000	.0087	.9409	114.59	.0591	30	1.5621
0.0116	40		8.0658	.9999	.0000		8.0658	85.940	1.9342	20	1.5592
0.0145	50	.0145	.1627	.9999	.0000	.0145	.1627	68.750	.8373	10	1.5563
0.0175	1° 00′	.0175	8.2419	.9998	9.9999	.0175	8.2419	57.290	1.7581	89° 00'	1.5533
0.0204	10	.0204	.3088	.9998	.9999	.0204	.3089	49.104	.6911	50	1.5504
0.0233	20 30	.0233	.3668 .4179	.9997 .9997	.9999 .9999	.0233 .0262	.3669 .4181	42.964 38.188	.6331 .5819	40 30	1.5475
0.0202		.0202	.4637	.9996	.9998	.0202	.4638	34.368	.5362	20	1.5417
0.0320	50	.0320	.5050	.9995	.9998	.0320	.5053	31.242	.4947	10	1.5388
0.0349	2° 00'		8.5428	.9994	9.9997	.0349	8.5431	28.636	1.4569		1.5359
0.0378	10	.0378	.5776	.9993	.9997	.0378	.5779	26.432	.4221	50	1.5330
0.0407	20	.0407	.6097	.9992	.9996	.0407	.6101	24.542	.3899	40	1.5301
0.0436	30	.0436	.6397	.9990	.9996	.0437	.6401	22.904	.3599	· 30	1.5272
0.0465	40	.0465	.6677	.9989	.9995	.0466	.6682	21.470	.3318	20	1.5243
0.0495	50	.0191	.6940	.9988	.9995	.0495	.6945	20.206	.3055	10	1.5213
0.0524	3° 00′	.0523	8.7188		9.9994		8.7194	19.081	1.2806		1.5184
0.0553	10	.0552	.7423	.9985	.9993	.0553	.7429	18.075	.2571	50 40	1.5155
0.0582 0.0611	20 30	.0581 .0610	.7645 .7857	.9983 .9981	.9993 .9992	.0582 .0612	.7652 .7865	17.169 16.350	.2348 .2135	40 30	1.5120
0.0640		.0640	.7657	.9980	.9991	.0641	.8067	15.605	.1933	20	1.5068
0.0669	50	.0669	.8251	.9978	.9990	.0670	.8261	14.924	.1739	10	1.5039
0.0698	4° 00′		8.8436	.9976		.0699	8.8446	14.301	1.1554	86° 00′	1.5010
0.0727	10	.0727	.8613	.9974	.9989	.0729	.8624	13.727	.1376	50	1.4981
0.0756	20	.0756	.8783	.9971	.9988	.0758	.8795	13.197	.1205	40	1.4952
0.0785	30	.0785	.8946	.9969	.9987	.0787	.8960	12.706	.1040	30	1.4923
0.0814	40	.0814	.9104	.9967	.9986	.0816	.9118	12.251	.0882	20	1.4893
0.0844	50	.0843	.9256	.9964	.9985	.0846	.9272	11.826	.0728	10	1.4864
0.0873	5° 00'		8.9403	.9962			8.9420	11.430			1.4835
0.0902	· 10	.0901	.9545	.9959	.9982	.0904 .0934	.9563 .9701	11.059 10.712	.0437	50 40	1.4806
0.0931 0.0960	20 30	.0929 .0958	.9682 .9816	.9957 .9954	.9981 .9980	.0954	.9836	10.712	.0299	30	1.4748
0.0989	- 30 - 40	.0933	.9945	.9951	.9979	.0992	.9966	10.078	.0034	20	1.4719
0.1018	50		9.0070	.9948	.9977		9.0093	9.7882		ĪŎ	1.4690
0.1047	6° 00′	.1045	9.0192	.9945	9.9976	.1051	9.0216	9.5144	0.9784	840 00'	1.4661
0.1076	10	.1074	.0311	.9942	.9975	.1080	.0336	9.2553	.9664	50	1.4632
0.1105	20	.1103	.0426	.9939	.9973	.1110	.0453	9.0098	.9547	40	1.4603
0.1134	30	.1132	.0539	.9936	.9972	.1139	.0567	8.7769	.9433	30	1.4574
0.1164	40	.1161	.0648	.9932	.9971	.1169	.0678	8.5555	.9322	20	1.4544
0.1193	50	.1190	.0755	.9929	.9969	.1198	.0786	8.3450	.9214	10	1.4515
0.1222	7° 00'		9.0859	.9925	9.9968	.1228	9.0891	8.1443	0.9109	83° 00'	1.4486 1.4457
0.1251	10	.1248	.0961	.9922	.9966 .9964	.1257	.0995 .1096	7.9530	.9005 .8904	50 40	1.4457
0.1280 0.1309	20 30	.1276	.1060 .1157	.9918	.9963	.1207	.1090	7.5958	.8806	30	1.4399
0.1309	30 40	.1305	.1252	.9911	.9961	.1346	.1291	7.4287	.8709	20	1.4370
0.1367	50	.1363	.1345	.9907	.9959	.1376	.1385	7.2687	.8615	10	1.4341
0.1396	8° 00′	.1392	9.1436	.9903	9.9958	.1405	9.1478	7.1154	0.8522	82° 00'	1.4312
0.1425	10	.1421	.1525	.9899	.9956	.1435	.1569	6.9682	.8431	50	1.4283
0.1454	20	.1449	.1612	.9894	.9954	.1465	.1658	6.8269	.8342	40	1.4254
0.1484	30	.1478	.1697	.9890	.9952	.1495	.1745	6.6912	.8255	30	1.4224
0.1513	40	.1507	.1781	.9886	.9950	.1524	.1831	6.5606	.8169	20 10	1.4195 1.4166
0.1542	50	.1536	.1863	.9881	.9948	.1554	.1915	6.4348	.8085		
0.1571	9° 00′	.1564 Nat.	9.1943 Log.	.9877 Nat.	9.9946 Log.	.1584 Nat.	9.1997 Log.	6.3138 Nat.	0.8003 Log.	81° 00′	1.4137
		COS	IN E S.	SIN	ES.	COTAN	GENTS.	JANG	BNTS.	DEGREES.	RADIANS.

Trigonometric Functions.

RADIANS.	DECREES	SINES.	COSINES.	TANGENTS.	COTANGENTS.	<u> </u>	
KADIANS.	DEGREES.						
0.1571	9° 00′	Nat. Log. .1564 9.1943	Nat. Log. .9877 9.9946	Nat. Log. .1584 9.1997	Nat. Log. 6.3138 0.8003	81° 00'	1.4137
0.1600	10	.1593 .2022	.9872 .9944	.1614 .2078	6.1970 .7922	50	1.4108
0.1629	20	.1622 .2100	.9868 .9942	.1644 .2158		40	1.4079
0.1658 0.1687	30 40	.1650 .2176 .1679 .2251	.9863 .9940 .9858 .9938	.1673 .2236 .1703 .2313		30 20	1.4050 1.4021
0.1716	50	.1708 .2324	.9853 .9936	.1733 .2389		10	1.3992
0.1745	10° 00′	.1736 9.2397	.9848 9.9934	.1763 9.2463	5.6713 0.7537	80° 00′	1.3963
0.1774	10	.1765 .2468	.9843 .9931	.1793 .2536		50	1.3934
0.1804	20	.1794 .2538 .1822 .2606	.9838 .9929 .9833 .9927	.1823 .2609 .1853 .2680		40 30	1.3904 1.3875
0.1833 0.1862	30 40	.1851 .2674	.9827 .9924	.1883 .2750		20	1.3846
0.1891	50	.1880 .2740	.9822 .9922	.1914 .2819		10	1.3817
0.1920	11° 00′	.1908 9.2806	.9816 9.9919	.1944 9.2887		79° 00′	1.3788
0.1949	10	.1937 .2870	.9811 .9917	.1974 .2953		50	1.3759
0.1978	20	.1965 .2934	.9805 .9914	.2004 .3020		40	1.3730
0.2007 0.2036	30 40	.1994 .2997 .2022 .3058	.9799 .9912 .9793 .9909	.2035 .3085 .2065 .3149		30 20	1.3701 1.3672
0.2065	50	.2051 .3119	.9787 .9907	.2095 .3212		10	1.3643
0.2094	12° 00′	.2079 9.3179	.9781 9.9904	.2126 9.3275	4.7046 0.6725	78° 00′	1.3614
0.2123	10	.2108 .3238	.9775 .9901	.2156 .3336		50	1.3584
0.2153	20	.2136 .3296	.9769 .9899	.2186 .3397	4.5736 .6603	40	1.3555
0.2182 0.2211	30 40	.2164 .3353 .2193 .3410	.9763 .9896 .9757 .9893	.2217 .3458 .2247 .3517	4.5107 .6542 4.4494 .6483	30 20	1.3526
0.2240	50	.2221 .3466	.9750 .9890	.2278 .3576		10	1.3468
0.2269	13° 00′	.2250 9.3521	.9744 9.9887		4.3315 0.6366	77° 00'	1.3439
0.2298	10	.2278 .3575	.9737 .9884	.2339 .3691	4.2747 .6309	50	1.3410
0.2327	20	.2306 .3629	.9730 .9881		4.2193 .6252	40	1.3381
0.2356 0.2385	30 40	.2334 .3682 .2363 .3734	. 9724 .9878 .9717 .9875		4.1653 .6196 4.1126 .6141	30 20	1.3352
0.2414	50	.2391 .3786	.9710 .9872		4.0611 .6086		1.3294
0.2443	14° 00′	.2419 9.3837	.9703 9.9869		4.0108 0.6032	76° 00′	1.3265
0.2473	10	.2447 .3887	.9696 .9866		3.9617 .5979	50	1.3235
0.2502	20 30	.2476 .3937 .2504 .3986	.9689 .9863 .9681 .9859		3.9136 .5926	40	1.3206
0.2531 0.2560	40	.2532 .4035	.9674 .9856	.2586 .4127 .2617 .4178	3.8667 .5873 3.8208 .5822	30 20	1.3177
0.2589	50	.2560 .4083	.9667 .9853	.2648 .4230	3.7760 .5770	10	1.3119
0.2618	15° 00′	.2588 9.4130	.9659 9.9849	.2679 9.4281	3.7321 0.5719		1.3090
0.2647	10	.2616 .4177	.9652 .9846	.2711 .4331	3.6891 .5669	50	1.3061
0.2676 0.2705	20 30	.2644 .4223 .2672 .4269	.9644 .9843 .9636 .9839		3.6470 .5619 3.6059 .5570	40 30	1.3032
0.2734	40	.2700 .4314	.9628 .9836	.2805 .4479	3.5656 .5521	20	1.2974
0.2763	50	.2728 .4359	.9621 .9832	.2836 .4527	3.5261 .5473	$\overline{10}$	1.2945
0.2793	16° 00′	.2756 9.4403	.9613 9.9828	.2867 9.4575	3.4874 0.5425		1.2915
0.2822	10	.2784 .4447	.9605 .9825	.2899 .4622	3.4495 .5378	50	1.2886
0.2851 0.2880	20 30	.2812 .4491 .2840 .4533	.9596 .9821 .9588 .9817	.2931 .4669 .2962 .4716	3.4124 .5331 3.3759 .5284	40 30	1.2857 1.2828
0.2000	40	.2868 .4576	.9580 .9814	.2902 .4710	3.3402 .5238	20	1.2799
0.2938	50	.2896 .4618	.9572 .9810	.3026 .4808		10	1.2770
0.2967	17° 00′	.2924 9.4659	.9563 9.9806		3.2709 0.5147		1.2741
0.2996	10	.2952 .4700			3.2371 .5102	50	1.2712
0.3025 0.3054	20 30	.2979 .4741 .3007 .4781	.9546 .9798 .9537 .9794	.3121 .4943 .3153 .4987	3.2041 .5057 3.1716 .5013	40 30	1.2683 1.2654
0.3083	40	.3035 .4821	.9528 .9790	.3185 .5031	3.1397 .4969	20	1.2625
0.3113	50	.3062 .4861	.9520 .9786	.3217 .5075	3.1084 .4925	10	1.2595
0.3142	18° 00′	.3090 9.4900 Nat. Log.	.9511 9.9782 Nat. Log.	.3249 9.5118 Nat. Log.	3.0777 0.4882 Nat. Log.	72° 00′	1.2566
		COSINES.	SINES.	COTANGENTS.	TANGENTS. Digitized	DEGREES	RADIANS.

Trigonometric Functions.

RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.	T	
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.3142	18° 00′	Nat. Log. .3090 9.4900	Nat. Log. .9511 9.9782	.3249 9.5118	Nat. Log. 3.0777 0.4882	72° 00′	1.2566
0.3171	10	.3118 .4939	.9502 .9778	.3281 .5161	3.0475 .4839	50	1.2537
0.3200	20	.3145 .4977	.9492 .9774	.3314 .5203	3.0178 .4797	40	1.2508
0.3229	30	.3173 .5015	.9483 .9770	.3346 .5245	2.9887 .4755 2.9600 .4713		1.2479 1.2450
0.3258	40 50	.3201 .5052 .3228 .5090	.9474 .9765 .9465 .9761	.3378 .5287 .3411 .5329	2.9600 .4713 2.9319 .4671		1.2450
0.3287	•		.9455 9.9757	.3443 9.5370			1.2392
0.3316 0.3345	19° 00' 10	.3256 9.5126 .3283 .5163	.9446 .9752	.3476 .5411	2.8770 .4589		1.2363
0.3373	20	.3311 .5199	.9436 .9748	.3408 .5451	2.8502 .4549		1.2334
0.3403	30	.3338 .5235	.9426 .9743	.3541 .5491			1.2305
0.3432	40	.3365 .5270	.9417 .9739	.3574 .5531	2.7980 .4469		1.2275
0.3462	50	.3393 .5306	.9407 .9734	.3607 .5571	2.7725 .4429		1.2246
0.3491	20° 00′	.3420 9.5341	.9397 9.9730	.3640 9.5611	2.7475 0.4389		1.2217
0.3520	10	.3448 .5375	.9387 .9725	.3673 .5650	2.7228 .4350		1.2188
0.3549	20	.3475 .5409 .3502 .5443	.9377 .9721 .9367 .9716	.3706 .5689 .3739 .5727	2.6985 .4311 2.6746 .4273		1.2159 1.2130
0.3578 0.3607	30 40	.3502 .5443 .3529 .5477	.9356 .9711	.3772 .5766			1.2101
0.3636	50	.3557 .5510	.9346 .9706	.3805 .5804			1.2072
0.3665	21° 00′	.3584 9.5543	.9336 9.9702	.3839 9.5842	2.6051 0.4158	69° 00'	1.2043
0.3694	10	.3611 .5576	.9325 .9697	.3872 .5879	2.5826 .4121		1.2014
0.3723	20	.3638 .5609	.9315 .9692	.3906 .5917	2.5605 .4083		1.1985
0.3752	- 30	.3665 .5641	.9304 .9687	.3939 .5954			1.1956
0.3782	40	.3692 .5673	.9293 .9682	.3973 .5991	2.5172 .4009		1.1926
0.3811	50	.3719 .5704	.9283 .9677	.4006 .6028	2.4960 .3972		1.1897
0.3840	22° 00′	.3746 9.5736	.9272 9.9672	.4040 9.6064	2.4751 0.3936 2.4545 .3900		1.1868 1.1839
0.3869	· 10 20	.3773 .5767 .3800 .5798	.9261 .9667 .9250 .9661	.4074 .6100 .4108 .6136			1.1810
0.3898 0.3927	30	.3827 .5828	.9239 .9656	.4142 .6172			1.1781
0.3956	40	.3854 .5859	.9228 .9651	.4176 .6208			1.1752
0.3985	50	.3881 .5889	.9216 .9646	.4210 .6243	2.3750 .3757	10	1.1723
0.4014	23° 00′	.3907 9.5919	.9205 9.9640	.4245 9.6279	2.3559 0.3721		1.1694
0.4013	10	.3934 .5948	.9194 .9635	.4279 .6314	2.3369 .3686		1.1665
0.4072	20	.3961 .5978	.9182 .9629	.4314 .6348			1.1636 1.1606
0.4102	30	.3987 .6007	.9171 .9624 .9159 .9618	.4348 .6383 .4383 .6417	2.2998 .3617 2.2817 .3583		1.1577
0.4131 0.4160	40 50	.4014 .6036 .4041 .6065	.9139 .9018	.4417 .6452	2.2637 .3548		1.1548
	24° 00'	.4067 9.6093	.9135 9.9607	.4452 9.6486	2.2460 0.3514		1.1519
0.4189 0.4218	10	.4094 .6121	.9135 9.9007	.4487 .6520	2.2286 .3480		1.1490
0.4247	20	.4120 .6149	.9112 .9596	.4522 .6553	2.2113 .3447	40	1.1461
0.4276	30	.4147 .6177	.9100 .9590	.4557 .6587	2.1943 .3413		1.1432
0.4305	40	.4173 .6205	.9088 .9584	.4592 .6620	2.1775 .3380		1.1403
0.4334	50	.4100 .6232	.9075 .9579	.4628 .6654	2.1609 .3346		1.1374
0.4363	25° 00′	.4226 9.6259	.9063 9.9573	.4663 9.6687	2.1445 0.3313		1.1345
0.4392	10	.4253 .6286	.9051 .9567	.4699 .6720 .4734 .6752	2.1283 .3280 2.1123 .3248		1.1316 1.1286
0.4422	20 30	.4279 .6313 .4305 .6340	.9038 .9561 .9026 .9555	.4734 .6752 .4770 .6785	2.1123 .3240 2.0965 .3215		1.1257
0.4451 0.4480	30 40	.4331 .6366	.9020 .9333	.4806 .6817	2.0809 .3183		1.1228
0.4509	50	.4358 .6392	.9001 .9543	.4841 .6850			1.1199
0.4538	26° 00'	.4384 9.6418	.8988 9.9537	.4877 9.6882	2.0503 0.3118	64° 00'	1.1170
0.4567	10	.4410 .6444	.8975 .9530	.4913 .6914	2.0353 .3086	50	1.1141
0.4596	20	.4436 .6470	.8962 .9524	.4950 .6946	2.0204 .3054		1.1112
0.4625	30	.4462 .6495	.8949 .9518	.4986 .6977	2.0057 .3023		1.1083
0.4654	40	.4488 .6521	.8936 .9512	.5022 .7009 .5059 .7040	1.9912 .2991 1.9768 .2960		1.1054 1.1025
0.4683	50	.4514 .6546	.8923 .9505				
0.4712	27° 00′	.4540 9.6570 Nat. Log.	.8910 9.9499 Nat. Log.	.5095 9.7072 Nat. Log.	1.9626 0.2928 Nat. Log.		1.0996
		COSINES	SINES.	COTANGENTS.	TANGENTS. Digitized by	DEGREES.	RADIANS.

.

Trigonometric Functions.

RADIANS.	DEGREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.4712	27° 00′	Nat. Log. .4540 9.6570	.8910 9.9499	.5095 9.7072	1.9626 0.2928	63° 00′	1.0996
0.4741	10	.4566 .6595	.8897 .9492	.5132 .7103	1.9486 .2897	50	1.0966
0.4771	20	.4592 .6620	.8884 .9486	.5169 .7134	1.9347 .2866	40	1.0937
0.4800	30	.4617 .6644	.8870 .9479	.5206 ,7165	1.9210 .2835	30	1.0908
0.4829	40	.4643 .6668	.8857 .9473	.5243 .7196	1.9074 .2804	20	1.0879
0.4858	50	.4669 .6692	.8843 .9466	.5280 .7226	1.8940 .2774	10	1.0850
0.4887	28° 00′	.4695 9.6716	.8829 9.9459	.5317 9.7257	1.8807 0.2743	62° 00′	1.0821
0.4916	10	.4720 .6740	.8816 .9453	.5354 .7287	1.8676 .2713	50	1.0792
0.4945	20	.4746 .6763	.8802 .9446	.5392 .7317	1.8546 .2683	40	1.0763
0.4974	30	.4772 .6787	.8788 .94 39	.5430 .7348		30	1.0734
0.5003	40	.4797 .6810	.8774 . 94 32	.5467 .7378		20	1.0705
0.5032	50	.4823 .6833	.8760 .9 4 25	.5505 .7408	1.8165 .2592	10	1.0676
0.5061	29° 00′	.4848 9.6856	.8746 9.9418	.5543 9.7438	1.8040 0.2562	61° 00′	1.0647
0.5091	10	.4874 .6878	.8732 .9411	.5581 .7467	1.7917 .2533	50	1.0617
0.5120	20	.4899 .6901	.8718 .9404	.5619 .7497	1.7796 .2503	40	1.0588
0.5149	30	.4924 .6923	.8704 .9397	.5658 .7526		30	1.0559
0.5178	40	.4950 .6946	.8689 .9390	.5696 .7556		20	1.0530
0.5207	50	.4975 .6968	.8675 .9383	.5735 .7585	1.7437 .2415	10	1.0501
0.5236	30° 00′	.5000 9.6990	.8660 9.9375	.5774 9.7614	1.7321 0.2386	60° 00′	1.0472
0.5265	10	.5025 .7012	.8646 .9368	.5812 .7644	1.7205 .2356	50	1.0443
0.5294	20	.5050 .7033	.8631 .9361	.5851 .7673	1.7090 .2327	40	1.0414
0.5323	30	.5075 .7055	.8616 .9353	.5890 .7701	1.6977 .2299	30	1.0385
0.5352	40	.5100 .7076	.8601 .9346	.5930 .7730	1.6864 .2270	20	1.0356
0.5381	50	.5125 .7097	.8587 .9338	.5969 .7759	1.6753 .2241	10	1.0327
0.5411	31° 00′	.5150 9.7118	.8572 9.9331	.6009 9.7788	1.6643 0.2212	59° 00'	1.0297
0.5440	10	.5175 .7139	.8557 .9323	.6048 .7816		50	1.0268
0.5469	20	.5200 .7160	.8542 .9315	.6088 .7845	1.6426 .2155	40	1.0239
0.5498	30	.5225 .7181	.8526 .9308	.6128 .7873		30	1.0210
0.5527	40	.5250 .7201	.8511 .9300	.6168 .7902	1.6212 .2098	20	1.0181
0.5556	50	.5275 .7222	.8 196 .9292	.6208 .7930	1.6107 .2070	10	1.0152
0.5585	32° 00′	.5299 9.7242	.8480 9.9284	.6249 9.7958	1.6003 0.2042	58° 00′	1.0123
0.5614	10	.5324 .7262	.8465 .9276	.6289 .7986		50	1.0094
0.5643	20	.5348 .7282	.8450 .9268	.6330 .8014		40	1.0065
0.5672	30	.5373 .7302	.8434 .9260	.6371 .8042		30	1.0036
0.5701	40	.5398 .7322	.8418 .9252	.6412 .8070	1.5597 .1930	20	1.0007
0.5730	50	.5422 .7342	.8403 .9244	.6453 .8097	1.5497 .1903	10	0.9977
0.5760	33° 00′	.5446 9.7361	.8387 9.9236	.6494 9.8125	1.5399 0.1875	57° 00'	0.9948
0.5789	10	.5471 .7380	.8371 .9228	.6536 .8153	1.5301 .1847	50	0.9919
0.5818	20	.5495 .7400	.8355 .9219	.6577 .8180		40	0.9890
0.5847	30	.5519 .7419	.8339 .9211	.6619 .8208	1.5108 .1792	30	0.9861
0.5876	40	.5544 .7438	.8323 .9203	.6661 .8235	1.5013 .1765	20	0.9832
0.5905	50	.5568 .7457	.8307 .9194	.6703 .8263	1.4919 .1737	ĪÕ	0.9803
0.5934	34° 00′	.5592 9.7476	.8290 9.9186	.6745 9.8290	1.4826 0.1710	56° 00'	0.9774
0.5963	10	.5616 .7494	.8274 .9177	.6787 .8317	1.4733 .1683	50 50	0.9745
0.5992	20	.5640 .7513	.8258 .9169	.6830 .8344	1.4641 .1656	40	0.9716
0.6021	30	.5664 .7531	.8241 .9160	.6873 .8371	1.4550 .1629	30	0.9687
0.6050	40	.5688 .7550	.8225 .9151	.6916 .8398	1.4460 .1602	20	0.9657
0.6080	50	.5712 .7568	.8208 .9142	.6959 .8425	1.4370 .1575	10	0.9628
0.6109	35° 00′	.5736 9.7586	.8192 9.9134	.7002 9.8452	1.4281 0.1548		0.9599
0.6138	10	.5760 .7604	.8192 9.9134	.7046 .8479	1.4193 .1521	50	0.9599
0.6167	20	.5783 .7622	.8175 .9125	.7089 .8506	1.4106 .1494		0.9570
0.6196	30	.5807 .7640	.8138 .9110	.7133 .8533	1.4019 .1467	30	0.9512
0.6225	40	.5831 .7657	.8124 .9098	.7177 .8559	1.3934 .1441	20	0.9483
0.6254	50	.5854 7675	.8107 .9089	.7221 .8586	1.3848 .1414	10	0.9454
0.6283	36° 00'	.5878 9.7692	.8090 9.9080	.7265 9.8613	1.3764 0.1387	54° 00'	0.9425
0.0200	30. 00.	.5878 9.7692 Nat. Log.	.8090 9.9080 Nat. Log.	.7205 9.8015 Nat. Log.	1.3764 0.1387 Nat. Log.	54° W	0.9425
		COSINES.	SINES.	COTANGENTS.	TANGENTS	DEGREES.	RADIANS.

Ň

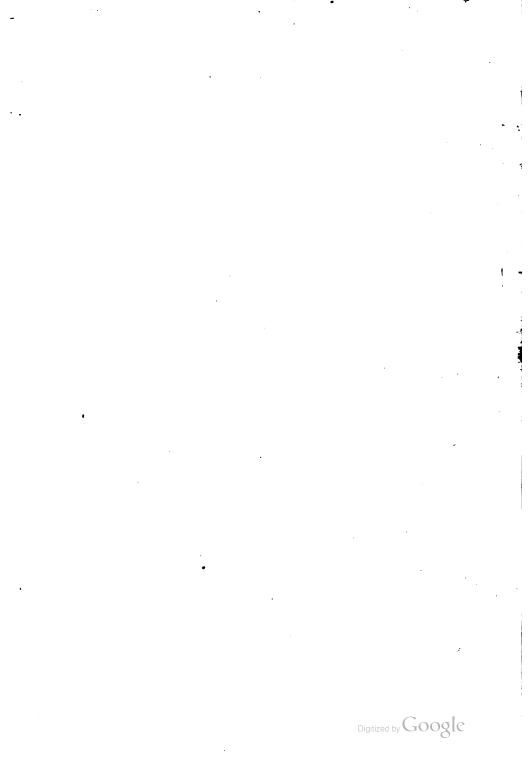
Trigonometric Functions.

RADIANS_DEGREES. SIMES. COSINES. TANGENTS. COTANGENTS. 0.6283 36° 00 5878 9.752 3009 00900 7.252 3009 00900 7.252 3009 00900 7.253 36661 1.354 40 0.9336 0.6311 20 5925 7.771 3005 3001 7.7310 38631 1.3764 0.9338 0.6420 40 5.972 7.7761 3001 9.9012 7.578 3867 1.3210 1.225 10 0.9279 0.6458 37° 0.6018 7.975 7.986 9.9014 7.731 3821 1.311 1.76 0 0.9221 0.9279 0.6635 3004 9.935 7.767 3821 1.111 1.76 0 0.9212 0.936 0.9211 0.9305 0.921 0.9361 0.9116 0.9016 0.921 0.9163 0.9116 0.9016 0.9016 0.9019 0.622 0.9214 0.9116 0.9016 0.9001 0.9016 0.9017		<u> </u>		 T	í		r	
0.6283 36° 00' .8378 9.7692 .8090 9.9080 .7265 9.8613 1.3764 00' 0.9425 0.6312 10 .5901 .7710 .8073 .9070 .7310 .8339 .1334 40 0.9367 0.6470 10 .5948 .7744 .8039 .9052 .7400 .8626 .13571 .1338 .09338 0.6409 50 .5995 .7778 .8004 .9033 .7490 .8745 1.3351 .1255 10 0.9221 0.6458 37° 07 .6018 .7828 .9877 .1310 .1203 50 0.9221 0.6545 40 .6111 .7861 .9916 .8955 .7673 .8850 .13032 .1150 30 .9163 0.6631 50 .6134 .7871 .7896 .9951 .7806 .9351 .1223 .104 .9105 0.6661 10 .6130 .7791 .7806 <	RADIANS	DEGREES.	SINRS.	COSINES.	TANGENTS.	COTANGENTS.		
0.6311 10 J.S901 7710 J.S07 J.3680 J.36800 J.36800	0.6283	369 00	Nat. Log.	Nat. Log.	Nat. Log. 7265 0.8613	Nat. Log.	540 000	0.0495
0.6370 0.03670 0.0376			5901 7710	8073 9070	7310 8639	1.3680 1361		
6.6370 30 5948 .7741 .8039 .9052 .7400 .8692 1.3514 .1308 joi 5938 0.6400 40 .5972 .7761 .8004 .9033 .7490 .8745 1.3351 .1255 10 0.9260 0.6487 10 .6018 9.7795 .7966 9.9014 .7581 .8797 .1310 .1203 50 0.9220 0.66451 10 .6015 .7828 .7951 .9004 .7637 .88571 .1310 .1203 .0 0.9213 0.6653 .6387 .6405 .57838 .7953 .7880 .8875 .7761 .8902 1.2876 .1098 10 0.9116 0.66632 .8870 .7813 .9825 .8002 .9326 .0247 .100 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016 .9016								
0.6400 40 5972 7761 8004 9033 7490 8745 1.3351 1.252 10 0.9305 0.6429 50 5995 7778 3004 9033 7490 8745 1.3351 1.257 10 0.9279 0.6448 37 00 6018 7906 9023 7536 9.8771 1.310 1.123 0.9221 0.6453 0.6516 20 60688 7884 7931 9904 7.673 8850 1.3032 1.150 30 0.9211 0.6554 40 6111 .7861 7916 8955 .7763 8902 1.2876 1.098 10 0.9113 0.66601 6.157 .7981 8.285 .7964 .89921 1.272 .0107 52 0.9076 0.9076 0.6625 .00076 0.6225 .0007 .8980 1.2647 .1020 40 .90918 0.6779 .800 .2627 .9044 .00 .9076 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0.6429 50 5995 7778 8.004 9.033 7.490 8.745 1.3270 0.1229 53° 00 0.9229 0.6487 10 6.018 9.7795 .7966 9.9021 .7536 8.8771 1.3270 0.1229 53° 00 0.9220 0.6515 10 6.065 .7828 .7951 .9004 .7627 .8824 1.3111 1.176 0 0.9123 0.6537 3.608 .7813 .8995 .7766 .8902 1.3027 1.124 0 0.9134 0.6632 38° 00' .6134 .7877 .7880 9.8955 .7866 .8902 1.2876 .1002 40 0.9018 0.6632 38° 00' .6134 .7877 .7880 .8955 .7866 .8902 .12471 .0024 0.09018 0.6636 10 .6180 .7913 .7990 .8915 .8002 .9032 1.2437 .9046 .00 .8939 0.6636 <								
0.6458 37° 00' 6018 9.7795 .7986 9.9023 .7536 9.8771 1.3270 0.1229 53° 00' 0.9250 0.64187 10 .6041 .7811 .7969 .9014 .7581 .8797 1.3190 1.103 50 0.9221 0.6514 20 .6068 .7824 .7931 .8995 .7673 .8850 1.3011 .1176 40 0.9192 0.6574 40 .6117 .7898 .8975 .7766 .8902 1.2276 .100 .9105 0.66601 .6180 .7910 .7862 .8955 .7766 .8902 1.2279 .0146 0 .9017 0.66601 .6180 .7910 .7862 .8935 .8005 .9032 1.2479 .00463 .00947 0.6620 .6222 .7927 .7708 .8905 .8015 .9038 1.2424 .00916 .10 .0930 0.6677 .50 .6271 .7973 <								
				1				
06516 20 6065 7828 .7951 9004 .7627 .8824 1.3111 1176 40 0.9163 0.6574 30 .6088 .7844 .7934 .8995 .7673 .8850 1.3032 .1150 30 0.9163 0.6632 50 .6134 .7877 .7898 .8975 .7766 .8902 1.2276 .1098 10 0.9105 0.6661 10 .6180 .7910 .7862 .8955 .7860 .8954 1.2723 .1046 50 0.9047 0.6660 20 .6202 .7924 .7826 .8935 .7864 .8904 1.2247 .1020 40 .0904 0.08988 0.6778 50 .6271 .7973 .7907 .8915 .8005 .9058 1.2423 .0042 10 .08930 0.6837 .06365 20 .6338 .8020 .7733 .8935 .8146 .9110 1.2271 .00854 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
0.6437 30 .6088 .7844 .7934 .8995 .7720 .8876 1.3032 .1150 30 .01743 0.6603 0.6111 .7861 .7916 .8995 .7720 .8876 1.2954 .1124 20 .91133 0.6603 0.6137 9.7898 .8975 .7860 .89921 1.2799 .1072 52° 00 .09076 0.6661 10 .6180 .7910 .7860 .89921 .1279 .1020 40 .09047 0.66601 10 .6183 .7934 .8935 .7806 .8921 .12437 .09944 .0.9047 0.6778 50 .6271 .7793 .8905 .8008 .9084 .12437 .09916 51° 00' .89391 0.6836 10 .6316 .8004 .7713 .8894 .8133 .9131 .12203 .8081 .0.8814 0.6836 10 .6316 .8006 .7673 .8834 .91								
0.6574 40 6.6111 77861 7916 89855 7720 8876 L2954 1124 20 0.9134 0.6603 50 6.134 .7877 .7898 .98955 .7813 .92851 .1098 10 0.9105 0.6661 10 .6180 .7910 7862 .9855 .7830 .98961 .12674 1020 40 0.9047 0.6660 20 .6202 .7926 .7937 .7907 .8988 1.2647 .1020 40 0.9018 0.6778 50 .6271 .7973 .7907 .8988 1.2449 .0994 .08930 0.6778 50 .6271 .7973 .8935 .8105 .9135 1.2233 .0942 10 .8930 0.6361 00 .6233 .97989 .7771 .8905 .8008 .9084 1.2349 .00916 51° 00° .8843 0.6493 30 .6361 .8006 .7679								
0.6603 50 .6134 .7877 .7898 .8975 .7766 .8902 1.2876 .1098 10 0.9105 0.6661 1 .6157 9.7893 .7880 9.8965 .7813 9.8928 1.2799 0.1072 52° 00' 0.90076 0.6661 1 .6180 .7910 .7862 .8955 .7860 .8954 1.2723 .1046 50 0.9007 0.6720 30 .6227 .7941 .7808 .8925 .8002 .9032 1.2497 .9948 20 .8985 0.6773 50 .6271 .7773 .8915 .8059 .9064 1.2349 .0916 51° 00' .8981 0.6836 10 .6316 .8001 .7753 .8834 .8111 .1213 .8333 .00 .8814 0.6634 40° .6448 .8061 .7679 .8833 .8312 .9111 .0333 .030 .8814 0.6								
0.6632 38° 00 6.157 9.7893 .7880 9.8965 .7813 9.8928 1.2799 0.1072 52° 00' 0.90076 0.66601 10 6.180 .7710 .7862 .8955 .7860 .8934 1.2723 .1046 50 0.90076 0.6670 30 .6225 .79141 .7826 .8935 .7907 .8980 1.26473 .0942 10 0.8959 0.6778 50 .6271 .7973 .7790 .8915 .8012 .0912 1.2479 .0942 10 0.8959 0.6836 10 .6316 .8004 .7713 .8985 .8146 .9110 1.2276 .0890 50 0.8872 0.6865 20 .6338 .8020 .7715 .8884 .8195 .9131 1.2039 .0813 20 .8785 0.6921 40 .6333 .8050 .7698 .8644 .8222 .9131 .12059 .01765 .0006 .								
0.6661 10 6180 7910 7862 8955 7860 8954 1.2247 1046 50 0.9047 0.6690 20 6202 7926 7844 8945 7907 8980 1.2447 1020 40 0.9018 0.6720 30 6225 7941 7826 8935 .7954 9006 1.2572 .0994 30 0.8988 0.6778 50 6271 7973 .7790 .8915 .8002 .9038 1.2447 .0964 10 0.8930 0.6807 39° 00' .6233 .9798 .7717 .8895 .8146 .9110 1.2276 .0890 50 .08872 0.66804 .0633 8005 .7718 .8844 .8129 .9135 1.2203 .0865 40 0.8843 0.6952 50 .6406 .8066 .7679 .8833 .8391 .9289 1.778 .0711 .0.8775 .08744 .0.8755 .6069								
0.6690 20 6.202 .7926 .7934 .8935 .7907 .8980 1.2647 .1020 40 0.2018 0.6749 30 .6225 .7941 .7826 .8933 .7954 .9006 1.2572 .9944 30 .08988 0.6778 50 .6271 .7973 .7790 .8915 .8050 .9058 1.2423 .9942 10 .08901 0.6836 10 .6316 .8004 .7753 .8988 .8146 .12349 .0942 10 .08930 0.6836 10 .6318 .8002 .7735 .8884 .8195 .9135 1.2203 .0865 40 0.8843 0.6982 50 .6406 .8066 .7679 .8854 .8292 .9187 1.2059 .0813 20 .8775 0.6982 50 .6402 .8061 .7669 .8843 .3319 .9238 1.1918 0.7765 50 .08727 0.								
0.6720 30 6225 7.941 7.826 8935 .9054 .9006 1.2572 .0998 30 0.8988 0.6778 50 6.271 .7973 .7790 .8915 .8050 .9058 1.2423 .0942 10 0.8991 0.6803 10 .6316 .8004 .7753 .8895 .8146 .9110 1.2276 .0890 50 0.8872 0.6865 20 .6338 .8020 .7715 .8894 .8195 .9135 1.2203 .0865 40 .08814 0.6923 40 .6338 .8020 .7716 .8874 .8243 .9161 1.2131 .0839 30 .0.8814 0.6923 50 .6406 .8066 .7679 .8853 .8342 .9187 1.2059 .0813 20 .0.8727 0.7010 10 .6450 .8066 .7642 .8831 .8311 .9164 .0.8502 .0.8661 .0.8668 .0.8572								
0.6749 40 6248 7.957 .7908 .8925 .8002 9032 1.2497 .9968 20 0.8959 0.6807 39° 00' .6293 9.7989 .7770 .8915 .8050 .9058 1.2423 .0942 10 0.8930 0.6807 39° 00' .6293 9.7989 .7771 .8985 .8146 .9110 1.2276 .0890 50 0.8831 0.66804 30 .6361 .8035 .7716 .8874 .8243 .9161 1.2131 .0839 30 0.8814 0.6981 40° .6446 .8066 .7679 .8853 .8312 .9212 1.1988 .0788 10 .8756 0.6981 40° Of .4428 .8061 .7642 .8831 .8391 .9228 1.1718 .0711 40 .86693 0.7059 30 .6494 .8125 .7664 .8781 .86131 .1504 .0851 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
0.6778 50 .6271 .7973 .7790 .8915 .8050 .9058 1.2423 .0942 10 0.8930 0.6807 39° 00' .6293 9.7989 .7771 9.8905 .8098 9.9084 1.2349 0.0916 51° 00' 0.8812 0.6865 20 .6338 .8020 .7735 .8884 .9101 1.2213 .0839 30 0.8813 0.6923 40 .6333 .8050 .7698 .8864 .8222 .9187 1.2059 .0813 20 0.8785 0.6952 50 .6406 .8066 .7679 .8853 .8341 .9264 1.1847 .0736 50 0.8698 0.7039 20 .6472 .8111 .7623 .8821 .8491 .9289 1.1778 .0711 40 0.8668 30 0.8693 30 .8662 .30 .8662 .30 0.8610 .7127 50 .6539 .8157 .566 .8799								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8098 9.9084	1.2349 0.0916		
0.6865 20 .6338 .8020 .7735 .8884 .8195 .9135 1.2203 .0865 40 0.8813 0.6694 30 .6361 .8035 .7716 .8874 .8243 .9161 1.2131 .0039 30 0.8814 0.6952 50 .6406 .8066 .7679 .8853 .8342 .9212 1.1988 .0788 10 0.8785 0.6981 40° 00' .6428 9.8081 .7660 9.8843 .8391 .9228 1.1918 0.0762 50° 00' 0.8727 0.7010 10 .6472 .8111 .7623 .8213 .8411 .9315 1.1778 .0711 40 .8668 30 .86693 .9392 1.1571 .0634 10 .8581 0.7127 50 .6551 .8169 .7547 .8778 .8693 .9392 1.1504 .0608 49° 00' .8552 0.7127 50 .6551 .8169 .7547 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0.6894 30 .6361 .8035 .7716 .8874 .8243 .9161 1.2131 .0839 30 0.8814 0.6923 40 .6383 .8050 .7698 .8864 .8292 .9187 1.2059 .0813 20 0.8756 0.6952 50 .6406 .8066 .7679 .8853 .8342 .9212 .11988 .0768 10 0.8756 0.7010 10 .6475 .8096 .7642 .8832 .8441 .9224 1.1778 .0711 40 0.8668 0.7009 20 .6472 .8111 .7623 .8821 .8491 .9299 1.1778 .0711 40 0.8668 0.7008 40 .6517 .8140 .7545 .8801 .8591 .93141 .1708 .0634 10 0.8511 0.7127 50 .6533 .8184 .7528 .8767 .8744 .9417 .1436 .0583 50 .8523 0.7214 20 .6604 .8198 .7509 .8775 .8847								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6894	30	.6361 .8035	.7716 .8874	.8243 .9161	1.2131 .0839	30	
0.6952 50 .6406 .8066 .7679 .8853 .8342 .9212 1.1988 .0788 10 0.8756 0.6981 40° 00' .6428 9.8081 .7660 9.8843 .8391 9.9238 1.1918 0.0762 50° 00' 0.8727 0.7010 10 .6450 .8096 .7642 .8812 .8441 .9264 1.1847 .0736 50 0.8698 0.7069 30 .6494 .8125 .7604 .8810 .8541 .9315 1.1708 .0655 30 0.8639 0.7028 40 .6517 .8140 .7585 .8603 9.9392 1.1504 0.0608 49° 00' 0.8552 0.7155 10 .6583 .8184 .7528 .8767 .8744 .9417 1.1436 .0583 .0 0.8523 0.7214 20 .6604 .8123 .7490 .8745 .8847 .9468 1.1303 .0532 30 0.8465					.8292 .9187	1.2059 .0813	20	
0.7010 10 .6450 .8096 .7642 .8832 .8441 .9264 1.1847 .0736 50 0.8698 0.7039 20 .6472 .8111 .7623 .8821 .8491 .9289 1.1778 .0711 40 0.8663 0.7098 40 .651.7 .8140 .7585 .800 .8591 .9311 1.1640 .06559 20 0.8610 0.7127 50 .6533 .8155 .7566 .8789 .8642 .9366 1.1571 .0634 10 0.8581 0.7115 10 .6561 .8169 .7547 .8778 .8693 .9.3922 1.1504 0.0608 49° 00' 0.8552 0.7124 20 .6604 .8198 .7508 .8776 .8744 .9413 1.1369 .0557 40 .8494 0.7214 20 .6604 .8123 .7490 .8745 .8847 .9468 1.1303 .0532 30 0.8465 0.7217 40 .6648 .8227 .7470 .8733 .8899 </td <td>0.6952</td> <td>50</td> <td>.6406 .8066</td> <td>.7679 .8853</td> <td>.8342 .9212</td> <td>1.1988 .0788</td> <td>10</td> <td></td>	0.6952	50	.6406 .8066	.7679 .8853	.8342 .9212	1.1988 .0788	10	
0.7010 10 .6450 .8096 .7642 .8832 .8441 .9264 1.1847 .0736 50 0.8698 0.7039 20 .6472 .8111 .7623 .8821 .8491 .9289 1.1778 .0711 40 0.8663 0.7098 40 .651.7 .8140 .7585 .800 .8591 .9311 1.1640 .06559 20 0.8610 0.7127 50 .6533 .8155 .7566 .8789 .8642 .9366 1.1571 .0634 10 0.8581 0.7115 10 .6561 .8169 .7547 .8778 .8693 .9.3922 1.1504 0.0608 49° 00' 0.8552 0.7124 20 .6604 .8198 .7508 .8776 .8744 .9413 1.1369 .0557 40 .8494 0.7214 20 .6604 .8123 .7490 .8745 .8847 .9468 1.1303 .0532 30 0.8465 0.7217 40 .6648 .8227 .7470 .8733 .8899 </td <td>0.6981</td> <td>40° 00′</td> <td>.6428 9.8081</td> <td>.7660 9.8843</td> <td>.8391 9.9238</td> <td>1.1918 0.0762</td> <td>50° 00′</td> <td>0.8727</td>	0.6981	40° 00′	.6428 9.8081	.7660 9.8843	.8391 9.9238	1.1918 0.0762	50° 00′	0.8727
0.7039 20 .6472 .8111 .7623 .8821 .8491 .9289 1.1778 .0711 40 0.8668 0.7098 40 .6517 .8140 .7585 .8800 .8591 .9341 1.1640 .0659 20 0.8610 0.7127 50 .6539 .8155 .7566 .8789 .8642 .9366 1.1571 .0634 10 0.8581 0.7125 10 .6563 .8189 .7577 9.8778 .8693 9.9392 1.1504 .06684 49° 00 0.8552 0.7185 10 .6563 .8184 .7528 .8767 .8744 .9417 1.1436 .0533 .50 0.8523 0.7214 20 .6604 .8227 .7470 .8733 .8899 .94494 1.1233 .0532 .00 .8465 0.7301 50 .6670 .8241 .7475 .8722 .8952 .9519 1.1171 .0481 10 .8407 0.7335 10 .6713 .8269 .7473 .8572 .9570 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.6472 .8111	.7623 .8821	.8491 .9289			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.7069	30	.6494 .8125		.8541 .9315		30	
0.7127 50 .6539 .8155 .7566 .8789 .8642 .9366 1.1571 .0634 10 0.8581 0.7156 41° 00' .6561 9.8169 .7547 9.8778 .8693 9.9392 1.1504 0.0608 49° 00' 0.8552 0.7185 10 .6583 .8184 .7528 .8766 .9443 1.1369 .0557 40 0.8494 0.7214 20 .6604 .8198 .7509 .8756 .8796 .9443 1.1303 .0552 0.8445 0.7242 40 .6648 .8227 .7470 .8733 .8899 .9494 1.1237 .0506 20 0.8436 0.7301 50 .6670 .8241 .7451 .8722 .8952 .9519 1.1171 .0481 10 0.8407 0.7330 42° 00' .6691 .8255 .7431 .8711 .9004 .9541 1.106 .0456 48° 00' 0.8378 0.7339 20 .6734 .8283 .7332 .8665 .9217 .9464	0.7098	40	.651.7 .8140	.7585 .8800	.8591 .9341	1.1640 .0659	20	0.8610
0.7185 10 .6583 .8184 .7528 .8767 .8744 .9417 1.1436 .0583 50 0.8523 0.7214 20 .6604 .8198 .7509 .8756 .8796 .9443 1.1369 .0557 40 0.8494 0.7213 30 .6626 .8213 .7490 .8745 .8847 .9468 1.1033 .0532 30 0.8465 0.7272 40 .6648 .8227 .7470 .8733 .8899 .9494 1.1237 .0506 20 .08436 0.7301 50 .6670 .8241 .7451 .8722 .8957 .9519 1.1171 .0481 10 .8465 0.7309 10 .6713 .8269 .7412 .8699 .9057 .9570 1.1041 .0430 50 .8378 0.7318 30 .6756 .8297 .7373 .8676 .9163 .9621 .0455 40 .8319 0.7447	0.7127	50	.6539 .8155	.7566 .8789	.8642 .9366		10	0.8581
0.7214 20 .6604 .8198 .7509 .8756 .8796 .9443 1.1369 .0557 40 0.8494 0.7243 30 .6626 .8213 .7490 .8745 .8847 .9468 1.1303 .0532 30 0.8465 0.7301 50 .6670 .8241 .7451 .8722 .8952 .9519 1.1171 .0481 10 0.8465 0.7330 42° 00' .6691 9.8255 .7431 9.8711 .9004 .9544 1.1106 0.0456 48° 00' 0.8378 0.7339 10 .6713 .8269 .7412 .8699 .9057 .1041 .0430 50 0.8378 0.7389 20 .6734 .8283 .7392 .8688 .9110 .9555 1.0977 .0405 40 0.8378 0.7447 40 .6777 .8311 .7353 .8665 .9217 .9646 .0805 .0354 20 .8223	0.7156	41° 00′	.6561 9.8169	.7547 9.8778	.8693 9.9392	1.1504 0.0608	49° 00'	0.8552
0.7214 20 .6604 .8198 .7509 .8756 .8796 .9443 1.1369 .0557 40 0.8494 0.72243 30 .6626 .8213 .7490 .8745 .8847 .9468 1.1303 .0532 30 0.8465 0.7272 40 .6648 .8227 .7470 .8733 .8899 .9494 1.1237 .0506 20 0.8436 0.7301 50 .6670 .8241 .7451 .8722 .8952 .9519 1.1171 .0481 10 0.8407 0.7330 42° 007 .6673 .8269 .7412 .8699 .9057 .9570 1.1041 .0430 50 0.8378 0.7339 20 .6734 .8283 .7392 .8688 .9110 .9555 1.0977 .0405 40 0.8319' 0.7418 30 .6756 .8297 .7373 .8675 .9217 .9646 1.0850 .0354 20 .8261 0.7476 50 .6779 .8324 .7333 .8653 .9277 <td>0.7185</td> <td>10</td> <td>.6583 .8184</td> <td>.7528 .8767</td> <td>.8744 .9417</td> <td>1.1436 .0583</td> <td>50</td> <td>0.8523</td>	0.7185	10	.6583 .8184	.7528 .8767	.8744 .9417	1.1436 .0583	50	0.8523
0.7272 40 .6648 .8227 .7470 .8733 .8899 .9494 1.1237 .0506 20 0.8436 0.7301 50 .6670 .8241 .7451 .8722 .8952 .9519 1.1171 .0481 10 0.8407 0.7330 42° 00' .6691 9.8255 .7431 9.8711 .9004 9.9544 1.1106 0.0456 48° 00' 0.8378 0.7359 10 .6713 .8269 .7412 .8699 .9057 .9570 1.1041 .0430 50 0.8348 0.7389 20 .6734 .8283 .7392 .8668 .9110 .9595 1.0977 .0405 40 .8319 0.7418 30 .6756 .8297 .7373 .8676 .9163 .9621 1.0913 .0379 30 0.8290 0.7447 40 .6777 .8311 .7333 .8653 .9217 .9671 1.0724 .0303 47° 00' 0.8232 0.7505 43° 00' .6820 .8338 .7314 .8641	0.7214	20	.6604 .8198	.7509 .8756	.8796 .9443	1.1369 .0557	40	0.8494
0.7301 50 .6670 .8241 .7451 .8722 .8952 .9519 1.1171 .0481 10 0.8407 0.7301 50 .6670 .8241 .7451 .8722 .8952 .9519 1.1171 .0481 10 0.8407 0.7330 42° 00' .6691 9.8255 .7431 9.8711 .9004 9.9544 1.1106 0.0456 48° 00' 0.8378 0.7389 20 .6734 .8283 .7392 .8688 .9110 .9595 1.0913 .0379 30 0.8290 0.7447 40 .6717 .8311 .7333 .8653 .9217 .9661 1.0850 .0354 20 0.8203 0.7447 40 .6777 .8311 .7333 .8653 .9271 .9671 1.0786 .0329 10 .8232 0.7505 4.3° 00' .6820 .8338 .7314 .98641 .9325 .99697 1.0724 .0303 47° 00'	0.7243	30				1.1303 .0532	30	0.8465
0.7330 42° 00' .6691 9.8255 .7431 9.8711 .9004 9.9544 1.1106 0.0456 48° 00' 0.8378 0.7359 10 .6713 .8269 .7412 .8699 .9057 .9570 1.1041 .0430 50 0.8378 0.7359 10 .6713 .8263 .7392 .8688 .9110 .9595 1.0977 .0405 40 0.8319' 0.7418 30 .6756 .8297 .7373 .8676 .9163 .9621 1.0913 .0379 30 0.8290 0.7447 40 .6777 .8311 .7333 .8653 .9217 .9646 1.0850 .0354 20 .82232 0.7505 4.3° 00' .6820 .8338 .7314 .9.8641 .9325 .9.9697 1.0724 .0303 47° 00' 0.8203 0.7534 10 .6841 .8351 .7294 .8629 .9380 .9722 1.0661 .0278 50	0.7272							
0.7359 10 .6713 .8269 .7412 .8699 .9057 .9570 1.1041 .0430 50 0.8348 0.7389 20 .6734 .8283 .7392 .8688 .9110 .9595 1.0977 .0405 40 0.8319' 0.7418 30 .6756 .8297 .7373 .8676 .9163 .9621 1.0913 .0379 30 0.8290 0.7447 40 .6777 .8311 .7353 .8665 .9217 .9646 1.0850 .0354 20 .8220 0.7476 50 .6799 .8324 .7333 .8653 .9271 .9671 1.0786 .0329 10 .8223 0.7505 4.3° 00' .6820 .9.8338 .7314 .9.8641 .9325 .9.9697 1.0724 .0.303 47° 00' 0.8203 0.7534 10 .6841 .8351 .7274 .8618 .9435 .9747 1.0599 .0235 40 .8145	0.7301	50	.6670 .8241	.7451 ·.8722	.8952 .9519	1.1171 .0481	10	0.8407
0.7389 20 .6734 .8283 .7392 .8688 .9110 .9595 1.0977 .0405 40 0.8319 0.7418 30 .6756 .8297 .7373 .8676 .9163 .9621 1.0913 .0379 30 0.8290 0.7447 40 .6777 .8311 .7353 .8665 .9217 .9641 1.0850 .0354 20 0.82261 0.7476 50 .6799 .8324 .7333 .8653 .9271 .9671 1.0786 .0329 10 .8232 0.7505 43° 007 .6820 .8338 .7314 .98641 .9325 .99697 1.0724 .0303 47° 007 .8232 0.7534 10 .6841 .8351 .7294 .8629 .9380 .9722 1.0661 .0278 50 .8174 0.7563 20 .6884 .8378 .7234 .8604 .9490 .9772 1.0338 .0228 .0<8145	0.7330	42° 00′	.6691 9.8255	.7431 9.8711	.9004 9.9544	1.1106 0.0456	48° 00'	0.8378
0.7418 30 .6756 .8297 .7373 .8676 .9163 .9621 1.0913 .0379 30 0.8290 0.7447 40 .6777 .8311 .7353 .8665 .9217 .9646 1.0850 .0354 20 0.8261 0.7476 50 .6799 .8324 .7333 .8653 .9217 .9671 1.0786 .0329 10 0.8232 0.7505 4.3° 00' .6820 .8338 .7314 .98641 .9325 .9.9697 1.0724 .0.0303 47° 00' 0.8203 0.7534 10 .6841 .8351 .7294 .8629 .9380 .9722 1.0661 .0278 50 .08174 0.7563 20 .6862 .8365 .7274 .8618 .9435 .9747 1.0599 .0253 40 .8145 0.7592 30 .6884 .8378 .7254 .8606 .9490 .9772 1.0538 .0228 .0016 .017								
0.7447 40 .6777 .8311 .7353 .8665 .9217 .9646 1.0850 .0354 20 0.8261 0.7476 50 .6799 .8324 .7333 .8653 .9271 .9671 1.0786 .0329 10 0.8232 0.7505 43° 00' .6820 9.8338 .7314 9.8641 .9325 9.9697 1.0724 0.0303 47° 00' 0.8203 0.7534 10 .6841 .8351 .7294 .8629 .9380 .9722 1.0661 .0278 50 0.8174 0.7563 20 .6862 .8365 .7274 .8618 .9435 .9747 1.0538 .0228 30 0.8115 0.7592 30 .6884 .8378 .7254 .8606 .9490 .9721 1.0538 .0228 30 0.8115 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 .8058 <td>0.7389</td> <td>20</td> <td></td> <td></td> <td>.9110 .9595</td> <td></td> <td></td> <td></td>	0.7389	20			.9110 .9595			
0.7476 50 .6799 .8324 .7333 .8553 .9271 .9671 1.0786 .0329 10 0.8232 0.7505 4.3° 00' .6820 9.8338 .7314 9.8641 .9325 9.9697 1.0724 0.0303 47° 00' 0.8203 0.7534 10 .6841 .8351 .7294 .8629 9.380 .9722 1.0661 .0278 50 0.8174 0.7563 20 .6862 .8365 .7274 .8618 .9435 .9747 1.0599 .0253 40 0.8174 0.7563 20 .6884 .8378 .7254 .8606 .9490 .9772 1.0538 .0228 30 0.8116 0.7621 40 .6905 .8391 .7234 .8594 .9557 .9781 1.0477 .0202 20 .08087 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 .8058 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0.7505 43° 00' .6820 9.8338 .7314 9.8641 .9325 9.9697 1.0724 0.0303 47° 00' 0.8203 0.7534 10 .6841 .8351 .7294 .8629 .9380 .9722 1.0661 .0278 50 0.8174 0.7503 20 .6862 .8365 .7274 .8618 .9435 .9747 1.0599 .0253 40 0.8145 0.7592 30 .6884 .8378 .7254 .8606 .9490 .9772 1.0588 .0228 30 0.8116 0.7621 40 .6905 .8319 .7234 .8504 .9545 .9798 1.0477 .0202 20 .08087 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 .8058 0.7679 14* 00' .6947 .8418 .7133 .8557 .9713 .9874 1.0295 .0126 50 .07999 0.7738 20 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0.7534 10 .6811 .8351 .7294 .8629 .9380 .9722 1.0661 .0278 50 0.8174 0.7563 20 .6862 .8365 .7274 .8618 .9435 .9747 1.0599 .0253 40 0.8145 0.7592 30 .6884 .8378 .7254 .8606 .9490 .9772 1.0538 .0228 30 0.8145 0.7621 40 .6905 .8301 .7234 .8504 .9545 .9798 1.0477 .0202 20 .8087 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 .8087 0.7679 14* 00' .6947 .8418 .7133 .8557 .9713 .9874 1.0295 .0126 50 0.7999 0.7738 20 .6988 .8444 .7153 .8545 .9770 .9899 1.0176 .0076 30 .7099								
0.7563 20 .6862 .8365 .7274 .8618 .9435 .9747 1.0599 .0253 40 0.8145 0.7592 30 .6884 .8378 .7254 .8606 .9490 .9772 1.0538 .0228 30 0.8145 0.7621 40 .6905 .8391 .7234 .8594 .9545 .9798 1.0477 .0202 20 .8087 0.7650 50 .6926 .8405 .7214 .8552 .9601 .9823 1.0416 .0177 10 .8058 0.7679 144° 00' .6947 .8418 .7133 .9857 .9713 .9874 1.0295 .0152 46° 00' .8029 0.7709 10 .6967 .8431 .7173 .8557 .9713 .9874 1.0295 .0126 50 0.7999 0.7708 20 .6988 .8444 .7153 .8532 .9924 1.0176 .0076 30 .79794								
0.7592 30 .6884 .8378 .7254 .8606 .9490 .9772 1.0538 .0228 30 0.8116 0.7621 40 .6905 .8391 .7234 .8594 .9545 .9798 1.0477 .0202 20 0.8087 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 0.8058 0.7679 44° 00' .6947 9.8418 .7173 .8557 .9713 .9874 1.0295 .0126 50 .6799 0.7709 10 .6968 .8444 .7153 .8545 .9770 .9899 1.0235 .0101 40 0.7970 0.7767 30 .7009 .8457 .7133 .8532 .9824 1.0176 .0076 30 .7094 .64857 .9713 .9894 1.0176 .0076 .07970 0.7767 30 .7003 .8469 .7112 .8520 .9884								
0.7621 40 .6905 .8391 .7234 .8594 .9545 .9798 1.0477 .0202 20 0.8087 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 0.8087 0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 0.8058 0.7679 44° 00' .6947 9.8418 .7193 9.8569 .9657 9.9848 1.0355 0.0152 46° 00' 0.8029 0.7709 10 .6967 .8431 .7173 .8557 .9713 .9874 1.0295 .0126 50 0.7999 0.7707 30 .7009 .8457 .7133 .8512 .9824 .0176 .0076 30 .7009 .8457 .7133 .8512 .9824 .0176 .0076 30 .7091 .8457 .9173 .9824 .0176 .0076 30 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0.7650 50 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 10 0.8058 0.7679 44° 00' .6947 9.8418 .7193 9.8569 .9657 9.9848 1.0355 0.0152 46° 00' 0.8029 0.7709 10 .6967 .8431 .7173 .8557 .9713 .9874 1.0295 .0126 50 0.7999 0.7738 20 .6988 .8444 .7153 .8545 .9770 .9897 1.0295 .0126 50 0.7999 0.7767 30 .7009 .8457 .7133 .8532 .9827 .9924 .0116 .0076 30 .7991 0.7785 40 .7030 .8469 .7112 .8520 .9884 .9949 1.0117 .0051 20 .0791 0.7825 50 .7050 .8482 .7092 .8507 .9942 .9975 1.0058 .0025 10 .7883								
0.7679 44° 00' .6947 9.8418 .7193 9.8569 .9657 9.9848 1.0355 0.0152 46° 00' 0.8029 0.7709 10 .6967 .8431 .7173 .8557 .9713 .9874 1.0295 .0126 50 0.7999 0.7708 20 .6988 .8444 .7153 .8545 .9770 .9894 1.0295 .0126 50 0.7999 0.7767 30 .7009 .8457 .7133 .8532 .9827 .9924 1.0176 .0076 30 0.7941 0.7766 40 .7030 .8469 .7112 .8520 .9884 .9949 1.0117 .0051 20 .0791 0.7825 50 .7050 .8482 .7092 .8507 .9942 .9975 1.0058 .0025 10 0.7883 0.7854 45° 00' .7071 .8495 .10000 0.0000 1.0000 .0000 .7854								
0.7709 10 .6967 .8431 .7173 .8557 .9713 .9874 1.0295 .0126 50 0.7999 0.7738 20 .6988 .8444 .7153 .8545 .9770 .9899 1.0235 .0101 40 0.7970 0.7736 20 .6988 .8444 .7153 .8545 .9770 .9899 1.0235 .0101 40 0.7970 0.7767 30 .7009 .8457 .7133 .8532 .9827 .9924 1.0176 .0076 30 0.7941 0.7796 40 .7030 .8469 .7112 .8520 .9884 .9949 1.0117 .0051 20 0.7911 0.7825 50 .7050 .8482 .7092 .8507 .9942 .9975 1.0058 .0025 10 0.7883 0.7854 45° 00' .7071 9.8495 .7071 .8495 1.0000 0.0000 1.0000 0.0000 45° 00' 0.7854 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0.7738 20 .6988 .8444 .7153 .8545 .9770 .9899 1.0235 .0101 40 0.7970 0.7767 30 .7009 .8457 .7133 .8532 .9827 .9924 1.0176 .0076 30 0.7941 0.7766 40 .7030 .8469 .7112 .8520 .9884 .9949 1.0117 .0051 20 0.7912 0.7825 50 .7050 .8482 .7092 .8507 .9942 .9975 1.0058 .0025 10 0.7883 0.7854 45° 00' .7071 9.8495 1.0000 0.0000 1.0000 0.0000 45° 00' 0.7854 Nat. Log. Nat. Log. Nat. Log. Nat. Log. Nat. Log. 0.7854								
0.7767 30 .7009 .8457 .7133 .8532 .9827 .9924 1.0176 .0076 30 0.7941 0.7796 40 .7030 .8469 .7112 .8520 .9884 .9949 1.0176 .0076 30 0.7941 0.7825 50 .7050 .8482 .7092 .8507 .9942 .9975 1.0058 .0025 10 0.7883 0.7854 45° 00' .7071 9.8495 .7071 9.8495 1.0000 0.0000 1.0000 0.0000 45° 00' 0.7854 Nat. Log. Nat. Log. Nat. Log. Nat. Log. 0.7854								
0.7796 40 .7030 .8469 .7112 .8520 .9884 .9949 1.0117 .0051 20 0.7912 0.7825 50 .7050 .8482 .7092 .8507 .9942 .9975 1.0058 .0025 10 0.7883 0.7854 45° 00' .7071 9.8495 .7071 9.8495 1.0000 0.0000 1.0000 0.0000 45° 00' 0.7854 Nat. Log. Nat. Log. Nat. Log. Nat. Log. 0.7854								
0.7825 50 .7050 .8482 .7092 .8507 .9942 .9975 1.0058 .0025 10 0.7883 0.7854 45° 00' .7071 9.8495 .7071 9.8495 1.0000 0.0000 1.0000 0.0000 45° 00' 0.7854 Nat. Log. Nat. Log. Nat. Log. Nat. Log. 0.7854								
0.7854 45° 00′ .7071 9.8495 Nat. Log. Nat. Log.								
Nat. Log. Nat. Log. Nat. Log. Nat. Log.								
	0.7854	45° 00′					45° 00′	0.7854
COSINES. SINES. COTANGENTS. TANGENTS. DEGREES RADIANS.			Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
			COSINES	SINES.	COTANGENTS.	TANGENTS.	DEGREES.	RADIANS.
					I		0	

PAGE INDEX.

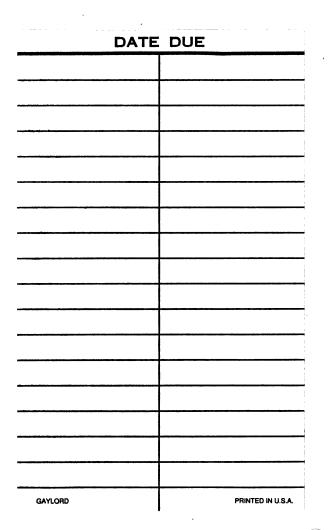
INTEGRALS.

			LNT.	egra	LS.					
										PAGES
Fundamenta	l forms .									3, 4
Rational alg	ebraic exp	ressions	i inv	olving	(a +	bx)	and (a	t' + b'	x)	5, 7
••	··· ··· ···· ···· ··· ··· ··· ··· ···	66		"	ia +	bx^n)			-,	8, 9
"	"	"		"			cx2)	•	•	10, 11
"	"	"		"	\~'-	h'r'	and (a+bx-	L cr2	11-13
Rational fra	ations				(w +	0 2)	, ma	- 040 -	- 000)	13, 14
		•	•	•	• _	•	·n	•	•	10, 14
Irrational al	gebraic ex	pressior	ıs in	volvin	g√a	+bx	or Va	1+bx		16, 17
"	"	"		" "				a'+b'		18, 19
"	" "	"		**	$\sqrt{x^2}$	$\frac{1}{2} \pm a^2$	or \sqrt{a}	$x^2 - x^2$		20-23
"	" "	" "		"	$\sqrt{2}$	ax -	$\overline{x^2}$			31
"	"	"		"	\sqrt{a}	+bx	$+cx^2$	•		23-27
"	"	"		**					$+cx^2$	27-30
Miscellaneou	ıs algebrai	c expres	ssion	ns.			•			32-34
General tran	nscendenta	l forms					· .			35-37
Expressions	involving	simple (dire	et trige	nome	etric	funct	ions		38-51
Expressions										51-53
Exponential								-	-	53-56
Logarithmic							-	•	•	56-58
Expressions		hvnerh	, Jie ·	functio	ng	•	•	•	•	58-61
Miscellaneo				Lancin	110	·	•	•	•	62-65
		mogra	LO CO	•	•	•	·	•	•	66-72
Elliptic inte	graus .	•	•	•	•	•	•	•	•	00 - 12


AUXILIARY FORMULAS AND TABLES.


Trigonometric functions		•							73-80
Hyperbolic functions									81-83
Elliptic functions .									84-87
Series	,			•					88-96
Derivatives									97-106
Green's Theorem and all	ied f	ormu	las						106-109
Table of mathematical co	nsta	ints							109
Tables of natural logarith	nms								110, 111
Tables for reducing radia		o deg	rees	of arc					111, 112
Tables of square roots		. "							´113
Tables of values of ex and	l e-	æ.					114-	116,	120, 121
Tables of elliptic integral	s							• •	117-119
Tables of hyperbolic fund		ns.							120-123
Table of logarithms of Γ									124
Three-place table of natu		trigon	ome	tric fu	nctio	ns			125
Four-place table of logar	ithn	usofi	numl	oers					126-129
Four-place table of trigor						•			130-134
1			10.			-		-	

135



JOHN G. WOLBACH LIBRARY HARVARD COLLEGE OBSERVATORY 60 GARDEN STREET CAMBRIDGE, MASS. 02136

